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We present an extension of the layer-multiple-scattering method to photonic crystals
of gyrotropic spheres in a homogeneous host medium. The efficiency of the method is
demonstrated on specific examples of three-dimensional chiral structures and surfaces
of crystals of plasma spheres in an external static uniform magnetic field that lack, si-
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1. Introduction

Nonreciprocal photonic devices play a key role in optical communication and com-

puting technologies because of their ability to eliminate cross-talk and feedback.

In this context, it has been shown that the occurrence of topologically nontrivial

phenomena, such as photonic chiral edge states, in appropriately designed nonrecip-

rocal magnetophotonic structures1–11 allows for reflection-free one-way transport of

light, which persists even in the presence of strong disorder. In general, to satisfy

a sufficient condition to ensure spectral nonreciprocity, ω(−k) 6= ω(k), requires

breaking both space-inversion and time-reversal symmetries.12 Therefore, the de-

velopment of full electrodynamic theoretical methods that can accurately describe

such low-symmetry photonic structures with reduced computational effort is of pri-

mary importance.

The layer-multiple-scattering (LMS) method is a versatile and accurate full

electrodynamic computational methodology for studying three-dimensional (3D)

photonic crystals consisting of nonoverlapping scatterers in a homogeneous host
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medium.13,14 An important aspect of the method is that, contrary to traditional

band-structure or time-domain methods, it solves Maxwell equations in frequency

domain and thus one can allow the electric permittivity and magnetic permeability

of any of the constituent materials to depend on the frequency, including also dis-

sipative losses. Besides the complex photonic band structure of an infinite crystal,

associated with a given crystallographic plane, the LMS method can also provide

the transmission, reflection and absorption coefficients of an electromagnetic (EM)

wave of any polarization incident at a given angle on a finite slab of the crystal and,

therefore, it can describe an actual transmission experiment. A further advantage of

the method is that it does not require periodicity in the direction perpendicular to

the layers, which must only have the same two-dimensional (2D) periodicity. There-

fore, a number of interesting geometries without inversion center, such as chiral

structures,15 asymmetric heterostructures,13 stacking disorder,16 photonic crystal

slabs on homogeneous plates and substrates,17 semi-infinite photonic crystals,18 etc

can be treated in a straightforward manner.

On the other hand, magneto-optic effects in gyrotropic materials under the

action of a static uniform magnetic field break time-reversal symmetry locally,

i.e., when only the propagation of light, and not the source of the magnetic field, is

considered. Therefore, extension of the LMS method to gyrotropic scatterers would

allow one to describe, also, nonreciprocal photonic structures. Such an extension

does not involve major difficulties, since the properties of the individual scatterers

enter only through the corresponding T matrix which, for gyrotropic spheres, can

be obtained by applying the appropriate boundary conditions for the wave field,

expanded into a spherical-wave basis, at the surface of the sphere.19–22 In this pa-

per we present an extension of the LMS method to photonic crystals of gyrotropic

spheres and demonstrate the applicability of the method on two specific architec-

tures of plasma spheres, without inversion center, in a static uniform magnetic field,

which exhibit a nonreciprocal spectral response: A 3D chiral structure and a surface

of a semi-infinite crystal.

2. Electromagnetic Waves in a Homogeneous Gyrotropic Medium

Material gyrotropy at optical and infrared frequencies is usually described by a

relative permittivity tensor

↔
ǫg= ǫz







ǫr −iǫκ 0

iǫκ ǫr 0

0 0 1






, (1)

taking the gyration vector along the z-axis, and a scalar relative permeability µg.

Starting from Maxwell equations for the spatial part of a monochromatic EM field

of angular frequency ω with exp(−iωt) time dependence inside such a sourceless

medium: ∇ ·B(r) = 0, ∇ ·D(r) = 0, ∇ × E(r) = iωB(r), ∇ ×H(r) = −iωD(r)

and the constitutive relations B(r) = µ0µgH(r) and D(r) = ǫ0
↔
ǫg E(r), we obtain
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the wave equation

∇×∇× [ǫz
↔
ǫg

−1
D(r)] − q2gD(r) = 0 , (2)

with q2g = ω2ǫzµgǫ0µ0 = ǫzµgω
2/c2.

Following the approach of Lin and Chui,20 we solve Eq. (2) by expanding

the wavefield into the specific vector-spherical-wave basis employed in our LMS

method.13,14 For this purpose we define a set of longitudinal (irrotational) spheri-

cal wavefunctions corresponding to a wavenumber q as

FLlm(r) =
1

q
∇[fl(qr)Ylm(r̂)] , l = 0, 1, 2, . . . ; m = −l,−l+ 1, . . . , l , (3)

where Ylm are the usual spherical harmonics and fl may be any linear combination

of the spherical Bessel function jl and the spherical Hankel function h+l .
13 Similarly,

we consider a set of transverse (divergenceless) spherical wavefunctions given by

FHlm(r) = fl(qr)Xlm(r̂)

FElm(r) =
i

q
∇× [fl(qr)Xlm(r̂)] , l = 1, 2, . . . ; m = −l,−l+ 1, . . . , l ,

(4)

where Xlm are the vector spherical harmonics.13 The above vector spherical wave

functions constitute a complete basis set for the expansion of any vector field.

The divergenceless property, ∇ · D = 0, suggests that D can be expanded in

terms of the vector spherical wavefunctions FHlm and FElm, and it does not involve

FLlm. We seek such a solution in the form

D(r) =
q2

q2g
ǫ0ǫz

∞
∑

l=1

l
∑

m=−l

[aHlmFHlm(r) + aElmFElm(r)] , (5)

where aHlm, aElm are appropriate expansion coefficients that have the dimension

of electric field. The choice of the prefactor q2ǫ0ǫz/q
2
g is, at this stage, arbitrary.

However, it is introduced here in order to obtain, as we shall see later, a simple

form for the magnetic and electric multipole components of the EM field, the same

as in the case of nongyrotropic materials. It can be shown (see Appendix A) that

ǫz
↔
ǫg

−1
D(r) =

q2

q2g
ǫ0ǫzw00FL00(r)

+
q2

q2g
ǫ0ǫz

∞
∑

l=1

l
∑

m=−l

[wlmFLlm(r) + d̄lmFHlm(r) + c̄lmFElm(r)] , (6)

where

w00 = −
√

2

3
ǫ′κaH10 −

√

2

15
ǭ′raE20 , (7)

wlm =

∞
∑

l′=1

l′
∑

m′=−l′

(

f̃ l′m′

lm aHl′m′ + f̄ l′m′

lm aEl′m′

)

, (8)
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d̄lm =

∞
∑

l′=1

l′
∑

m′=−l′

(

g̃l
′m′

lm aHl′m′ + ḡl
′m′

lm aEl′m′

)

, (9)

c̄lm =

∞
∑

l′=1

l′
∑

m′=−l′

(

ẽl
′m′

lm aHl′m′ + ēl
′m′

lm aEl′m′

)

, (10)

with ǭ′r = ǫ′r−1, ǫ′r = ǫr/(ǫ
2
r−ǫ2κ), ǫ′κ = −ǫκ/(ǫ2r−ǫ2κ). Explicit expressions for g̃l

′m′

lm ,

ḡl
′m′

lm , ẽl
′m′

lm , ēl
′m′

lm , f̃ l′m′

lm , f̄ l′m′

lm are derived in Appendix A. Inserting Eqs. (5) and

(6) into the wave equation (2), and taking into account Eqs. (A.1), we obtain

∞
∑

l=1

l
∑

m=−l

[(q2d̄lm − q2gaHlm)FHlm(r) + (q2c̄lm − q2gaElm)FElm(r)] = 0 , (11)

which leads to the following eigenvalue problem

∑

P ′=H,E

∞
∑

l′=1

l′
∑

m′=−l′

APlm;P ′l′m′aP ′l′m′ =
q2g
q2
aPlm , (12)

where AHlm;Hl′m′ = g̃l
′m′

lm , AHlm;El′m′ = ḡl
′m′

lm , AElm;Hl′m′ = ẽl
′m′

lm , AElm;El′m′ =

ēl
′m′

lm . Since Eq. (2) is satisfied byD in the form of Eq. (5) with expansion coefficients

given by any of the j = 1, 2, . . . eigenvectors aPlm;j of matrix A and vector spherical

waves of wavenumber qj obtained by the corresponding eigenvalue, the general

solution for D can be written in the form

D(r) =
∑

j

bj
q2j
q2g
ǫ0ǫz

∞
∑

l=1

l
∑

m=−l

[

aHlm;jFHlm(r) + aElm;jFElm(r)] , (13)

where the expansion coefficients bj are to be determined, in general, by the boundary

conditions. With D given by Eq. (13), it follows from H(r) = (−i/ωµ0µg)∇×E(r)

and from the constitutive relations that the E and H fields take the form

E(r) =
∑

j

bj

{

q2j
q2g
w00;jFL00(r)

+
∞
∑

l=1

l
∑

m=−l

[

q2j
q2g
wlm;jFLlm(r) + aHlm;jFHlm(r) + aElm;jFElm(r)

]}

(14)

and

H(r) =
∑

j

bj
qj

ωµ0µg

∞
∑

l=1

l
∑

m=−l

[aElm;jFHlm(r) − aHlm;jFElm(r)] , (15)

respectively, where wlm;j =
∑∞

l′=1

∑l′

m′=−l′(f̃
l′m′

lm aHl′m′;j + f̄ l′m′

lm aEl′m′;j) and

w00;j = −
√

(2/3)ǫ′κaH10;j −
√

(2/15)ǭ′raE20;j .
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3. Scattering by a Gyrotropic Sphere

We assume a homogeneous gyrotropic sphere of radius S, characterized by EM

parameters
↔
ǫg and µg, centered at the origin of coordinates in a host medium

characterized by ǫh and µh. The sphere is illuminated by a plane EM wave. Using

the methodology presented in Sec. 2, we write the corresponding EM field inside

the sphere as

Ein(r) =
∑

j

bj

{

q2j
q2g
w00;j

1

qj
∇[j0(qjr)Y

0
0 (r̂)]

+
∞
∑

l=1

l
∑

m=−l

[

q2j
q2g
wlm;j

1

qj
∇[jl(qjr)Y

m
l (r̂)] + aHlm;jjl(qjr)Xlm(r̂)

+ aElm;j
i

qj
∇× jl(qjr)Xlm(r̂)

]}

. (16)

Hin(r) =
∑

j

bj
qj

ωµ0µg

∞
∑

l=1

l
∑

m=−l

[

aElm;jjl(qjr)Xlm(r̂)

− aHlm;j
i

qj
∇× jl(qjr)Xlm(r̂)

]

. (17)

Outside the sphere we express the EM field, as usual,13,14 as a combination of the

incident and scattered fields

Eout(r) =
∞
∑

l=1

l
∑

m=−l

[

a0Hlmjl(qhr)Xlm(r̂) +
i

qh
a0Elm∇× jl(qhr)Xlm(r̂)

+ a+Hlmh
+
l (qhr)Xlm(r̂) +

i

qh
a+Elm∇× h+l (qhr)Xlm(r̂)

]

, (18)

Hout(r) =

√

ǫhǫ0
µhµ0

∞
∑

l=1

l
∑

m=−l

[

a0Elmjl(qhr)Xlm(r̂)− i

qh
a0Hlm∇× jl(qhr)Xlm(r̂)

+ a+Elmh
+
l (qhr)Xlm(r̂)− i

qh
a+Hlm∇× h+l (qhr)Xlm(r̂)

]

, (19)

where qh = ω
√
ǫhµh/c and the coefficients a0Plm, a+Plm refer to the incident and

scattered waves, respectively. Applying the boundary conditions of continuity of

the tangential components of the EM field at the surface of the sphere we obtain

a0Hlm = −h
+
l (qhS)

jl(qhS)
a+Hlm +

∑

j

jl(qjS)

jl(qhS)
aHlm;jbj (20)

a0Elm = −h
+
l (qhS)

jl(qhS)
a+Elm +

∑

j

µhqjjl(qjS)

µgqhjl(qhS)
aElm;jbj , (21)
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a0Hlm = −
[xh+l (x)]

′
qhS

[xjl(x)]′qhS
a+Hlm +

∑

j

µh[xjl(x)]
′
qjS

µg[xjl(x)]′qhS
aHlm;jbj , (22)

a0Elm = −
[xh+l (x)]

′
qhS

[xjl(x)]′qhS
a+Elm +

∑

j

qh[xjl(x)]
′
qjS

qj [xjl(x)]′qhS
aElm;jbj

−
∑

j

√

l(l+ 1)qjqhjl(qjS)

q2g [xjl(x)]
′
qhS

wlm;jbj . (23)

Equations (20)–(23) can be rewritten in matrix form

a0 = Λa+ +Ub , (24)

a0 = Λ′a+ +Vb , (25)

where

ΛPlm;P ′l′m′ = −h
+
l (qhS)

jl(qhS)
δPP ′δll′δmm′ ,

Λ′
Plm;P ′l′m′ = −

[xh+l (x)]
′
qhS

[xjl(x)]′qhS
δPP ′δll′δmm′ ,

(26)

UHlm;j =
jl(qjS)

jl(qhS)
aHlm;j , UElm;j =

µhqjjl(qjS)

µgqhjl(qhS)
aElm;j , (27)

VHlm;j =
µh[xjl(x)]

′
qjS

µg[xjl(x)]′qhS
aHlm;j ,

VElm;j =
qh[xjl(x)]

′
qjS

qj [xjl(x)]′qhS
aElm;j −

√

l(l+ 1)qjqhjl(qjS)

q2g [xjl(x)]
′
qhS

wlm;j .

(28)

Equations (24) and (25) can be solved to give

b = Ra0 (29)

a+ = Ta0 , (30)

where R = (U+ΛZ)−1, Z = (Λ−Λ′)−1(V −U), T = ZR.

Equation (30) defines the so-called scattering T matrix, which relates the ex-

pansion coefficients (in the given spherical-wave basis) of the scattered field to those

of the incident field. For a sphere described by a relative permittivity tensor in the

form of Eq. (1), the T matrix has a block diagonal form: TPlm;P ′l′m′ = T
(m)
Pl;P ′l′δmm′ .

Moreover, T
(m)
Pl;P ′l′ vanishes identically if the magnetic (H)/electric (E) multipoles

corresponding to Pl and P ′l′ do not have the same parity, even or odd, which means

that the T matrix in a given m subspace is further reduced into two submatrices.

These symmetry properties, however, do not hold in any coordinate system. If α,

β, γ are the Euler angles transforming an arbitrarily chosen coordinate system into

1441012-6
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the given coordinate system in which the relative permittivity tensor has the form

of Eq. (1), the T matrix is given by

TPlm;P ′l′m′ =
∑

m′′

D
(l)
mm′′(α, β, γ)T

(m′′)
Pl;P ′l′D

(l′)
m′′m′(−γ,−β,−α) , (31)

where D(l) are the appropriate transformation matrices associated with the l irre-

ducible representation of the O(3) group.23

4. The Layer-Multiple-Scattering Method

In the spirit of the multiple-scattering approach, the scattering properties of a

composite structure are obtained from those of its constituent building units. Once

the T matrix of the gyrotropic spheres is calculated, in-plane multiple scattering

for a 2D periodic array of such spheres is described in the given spherical-wave

basis using the calculated T matrix and appropriate propagator functions.13,14 For

multilayer structures with the same 2D periodicity, the LMS method describes

interlayer coupling by properly combining the transmission and reflection matrices

of the component layers, so as to describe multiple scattering between the layers

to any order, in a plane-wave representation defined as follows. The component of

the wavevector of the incident plane wave parallel to the layers, q‖, is written as

q‖ = k‖ + g′, where k‖, the reduced wavevector in the surface Brillouin zone, is a

conserved quantity in the scattering process and g′ is a certain reciprocal vector of

the given 2D lattice. Therefore, the wavevector of the incident wave has the form

K±
g′ = k‖ + g′ ± [q2h − (k‖ + g′)2]1/2êz, where qh is the wavenumber, êz is the

unit vector along the z-axis and the + or − sign refers to incidence from z < 0 or

from z > 0, i.e., a wave propagating towards the positive or negative z-direction,

respectively. Since k‖ and the angular frequency ω are conserved quantities in the

elastic scattering process, the scattered field consists of a series of plane waves

with wavevectors K±
g
= k‖ + g± [q2h − (k‖ + g)2]1/2êz, ∀g and polarizations along

ê1 and ê2 (polar and azimuthal unit vectors, respectively, associated with every

K±
g
). Corresponding circularly polarized plane waves are defined by the unit vectors

êL = (ê1+iê2)/
√
2 and êR = (ê1−iê2)/

√
2, for left circular polarization (LCP) and

right circular polarization (RCP), respectively. It is worth noting that, though the

scattered field consists, in general, of a number of diffracted beams corresponding to

different 2D reciprocal lattice vectors g, only beams for which K±
gz is real constitute

propagating waves. When (k‖ + g)2 > q2h we have an evanescent beam and the

corresponding unit vectors ê1, ê2 become complex but they are still orthonormal:

êp · êp′ = δpp′ , p(p′) = 1, 2.

The ratio of the transmitted or reflected energy flux to the energy flux associ-

ated with the incident wave defines the transmittance or reflectance, respectively,

of a multilayer slab. On the other hand, for a 3D crystal consisting of an infinite

periodic sequence of layers, stacked along the z-direction, applying the Bloch con-

dition for the wave field in the region between two consecutive unit slabs leads to
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an eigenvalue equation, which gives the z component of the Bloch wave vector,

kz , for the given ω and k‖. The eigenvalues kz(ω,k‖), looked upon as functions

of real ω, define, for each k‖, lines in the complex kz plane. Taken together they

constitute the complex band structure of the infinite crystal associated with the

given crystallographic plane. A line of given k‖ may be real (in the sense that kz
is real) over certain frequency regions, and be complex (in the sense that kz is

complex) for ω outside these regions. It turns out that, for given k‖ and ω, out

of the eigenvalues kz(ω,k‖) none or, at best, a few are real and the correspond-

ing eigenvectors represent propagating modes of the EM field in the given infinite

crystal. The remaining eigenvalues kz(ω,k‖) are complex and the corresponding

eigenvectors represent evanescent waves. These have an amplitude which increases

exponentially in the positive or negative z-direction and, unlike the propagating

waves, do not exist as physical entities in the infinite crystal. However, they are an

essential part of the physical solutions of the EM field in a slab of finite thickness. A

region of frequency where propagating waves do not exist, for given k‖, constitutes

a frequency gap of the EM field for the given k‖. If over a frequency region no

propagating wave exists whatever the value of k‖, then this region constitutes an

absolute frequency gap.

5. Applications

We shall now apply our generalized LMS method to describe the optical response

of some structures of plasma spheres, without space inversion symmetry, under the

action of an external static uniform magnetic field. In all of the cases we studied we

obtained good convergence by truncating the spherical-wave expansion at lmax = 6

and taking into account 45 2D reciprocal lattice vectors.

The response of a plasma to an external EM field can be described by a relative

magnetic permeability µp = 1 and by the simple yet effective Drude relative electric

permittivity24

ǫp = 1−
ω2
p

ω(ω + i/τ)
, (32)

where τ is the relaxation time of the free carriers and ωp is the bulk plasma fre-

quency: ω2
p = ne2/(mǫ0), with n, −e and m the carrier density, charge and mass,

respectively, which naturally introduces c/ωp as the length unit. We note that, as-

suming ~ωp ≃ 10 eV, which is a typical value for metals, c/ωp corresponds to about

20 nm. For semiconductors, on the other hand, as their carrier densities can be

easily varied within a broad range of values, which are much lower than those in

metals, the plasma frequency is much smaller (typically at mid- and far-infrared

frequencies) and the length unit c/ωp increases accordingly.

In the presence of a static uniform magnetic field, B, the response of a plasma

to a time-harmonic EM wave of angular frequency ω, with electric-field component

E = E0 exp(−iωt), is described by the equation of motion of the electrons: mr̈ =

−mτ−1ṙ− eE− eṙ ×B. The resulting polarization density, P = −ner, defines an
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electric displacement vector D = ǫ0E + P and finally yields the relative electric

permittivity tensor
↔
ǫg of the magnetized plasma through D = ǫ0

↔
ǫg E. Defining the

cyclotron resonance frequency, ωc = eB/m, if B is oriented along the z-direction,

after some straightforward algebra we find that
↔
ǫg has the gyrotropic form

↔
ǫg=





















1−
ω2
p[1 + i/(τω)]

(ω + i/τ)2 − ω2
c

i
ωc

ω

ω2
p

(ω + i/τ)2 − ω2
c

0

−iωc

ω

ω2
p

(ω + i/τ)2 − ω2
c

1−
ω2
p[1 + i/(τω)]

(ω + i/τ)2 − ω2
c

0

0 0 1−
ω2
p

ω(ω + i/τ)





















. (33)

We note that, by setting ωc = 0,
↔
ǫg becomes a diagonal tensor with all of its

diagonal elements equal to ǫp given by Eq. (32), as expected. In our calculations

we shall neglect dissipative losses (τ−1 = 0) in order to ensure an unambiguous

interpretation of the photonic band structure.

We first consider a tetragonal crystal defined by the primitive lattice vectors

a1 = (a, 0, 0), a2 = (0, a, 0), a3 = (0, 0, d) and a basis of four plasma spheres, of

radius S, centered at (0, 0, 0), (b, 0, d/4), (b, b, d/2), (0, b, 3d/4), as shown in Fig. 1,

embedded in a homogeneous host medium of relative electric permittivity ǫh = 1

and magnetic permeability µh = 1. For the crystal under consideration, we take

a = c/ωp, d = 2c/ωp, S = 0.2c/ωp and b = 0.3c/ωp. The photonic band structure

of this crystal is characterized by the presence of narrow bands, which originate

Fig. 1. Left-hand panel: The unit cell of a chiral crystal described by a tetragonal lattice, of
lattice constants a and d, with a basis of four Drude spheres of radius S = 0.2c/ωp, in a helical
arrangement along the z-direction (a = c/ωp, d = 2c/ωp, b = 0.3c/ωp). Right-hand panel: The
photonic band structure of this crystal under the action of a static uniform magnetic field corre-
sponding to ωc = 0.01ωp along the [001] direction, in the frequency region about the lowest flat
bands. Next to the band diagram we depict the corresponding transmittance of a (001) slab of the

crystal, consisting of 16 layers of spheres, for LCP and RCP light incident in (+) and opposite to
(−) the direction of the static magnetic field.
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from the dipole particle-plasmon modes of the individual spheres, at ω1 = 0.575ωp,

weakly interacting between them. These flat bands hybridize with the extended

bands that would be in an underlying homogeneous effective medium, giving rise to

frequency gaps and negative-slope dispersion,25 while a Dirac point was identified

at the center of the first Brillouin zone.26 It is worth noting that, though this crystal

does not possess space-inversion symmetry, the symmetry ω(−k) = ω(k) persists

because of time-reversal symmetry.

If we assume that a static uniform magnetic field is applied along the z-direction,

the scalar Drude permittivity of the plasma spheres becomes a tensor,
↔
ǫg, given by

Eq. (33) with τ−1 = 0 since we neglect dissipative losses. In Fig. 1 we depict

the calculated photonic band structure in this case, in the frequency region of the

lowest flat bands assuming ωc = 0.01ωp. This value of ωc, though it is by an order

of magnitude smaller than that used by Yu et al.,27 for metals corresponds to a

prohibitively strong magnetic field, of the order of 103 T, but for semiconductors

the field becomes much weaker, of the order of 1 T or less. As dictated by group

theory, the bands along this direction are nondegenerate and the associated Bloch

modes are characterized by a different degree of LCP and RCP admixture that

varies along a specific band. However, now, because of the lower symmetry due

to the static magnetic field, all degeneracies at the high symmetry points are also

removed. For example, as shown in Fig. 1, the bands do not cross each other at the

Dirac point at the center of the first Brillouin zone and split apart, as anticipated

by Yannopapas on the basis of a simple model.26 However, here, in addition to

this splitting, spectral nonreciprocity, ω(−k) 6= ω(k), is also clearly manifested as

a result of time-reversal-symmetry breaking in conjunction with the lack of space-

inversion symmetry. We note that the invariance of Bloch modes that differ by

a reciprocal lattice vector, i.e., here by (0, 0, 2πn/d), n = 0,±1,±2, . . . , is not

violated.

In Fig. 1, next to the band diagram, we depict the corresponding transmittance

of a (001) slab of the crystal consisting of 16 layers of spheres, for LCP and RCP

light incident in (+) and opposite to (−) the direction of the static magnetic field.

Though there is no frequency region where only modes with positive or negative

group velocity exist, interestingly, in the range from 0.554ωp to 0.558ωp we have

polarization-selective one-way transmission, where LCP waves are predominantly

transmitted in the direction of the static magnetic field while RCP waves are trans-

mitted only in the opposite direction.

We next consider a semi-infinite fcc crystal of plasma spheres, grown along its

[001] direction, as shown in the left-hand panel of Fig. 2. The spheres have a radius

S = c/ωp and the nearest neighbor distance in the fcc lattice is a0 = 2.2c/ωp. It has

been recently shown that this crystal supports surface, so-called Tamm, states at its

(001) surface.18 The dispersion curve, ω(k‖), of an optical Tamm state lies outside

the light cone in the host medium and at the same time within a frequency gap of

the crystal. This ensures that the associated EM field decreases exponentially on

either side of the surface. Moreover, the dispersion of a surface state satisfies the
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Fig. 2. Left-hand panel: A semi-infinite fcc crystal of Drude spheres (nearest neighbor distance:
a0 = 2.2c/ωp; sphere radius: S = c/ωp), grown along its [001] direction, with surface states
(schematic representation). Right-hand panel: The dispersion diagram of an actual surface state
at the (001) surface of this crystal under the action of a static uniform magnetic field corresponding
to ωc = 0.01ωp along the [110] crystallographic direction which is taken to be the y-axis. The (+)
and (−) signs denote positive and negative values of kx, which correspond to backward and forward
propagating modes, respectively. The shaded area marks the region of the frequency bands.

reciprocity condition ω(−k‖) = ω(k‖). However, if an external static uniform mag-

netic field is applied parallel to the surface, say along the y-direction, the dispersion

of the surface state changes and becomes nonreciprocal: ω(−kx) 6= ω(kx). This is

shown in Fig. 2, which displays the dispersion of an optical Tamm state at the

(001) surface of the crystal of plasma spheres under consideration, in the positive

(+) and negative (−) x-direction. Reversal of the magnetic field direction has the

same effect as reversal of the propagation direction (kx → −kx) while, if the mag-

netic field is perpendicular to the surface or parallel to the propagation direction,

nonreciprocity is not encountered. Since in the present case the static magnetic field

is not oriented along the z-direction, which is by definition the direction of growth

of the crystal in the LMS method, the calculations involved require transforming

the T matrix according to Eq. (31) using the appropriate Euler angles: α = 90◦,

β = 90◦, γ = 0◦.28

As a result of the spectral splitting of the dispersion curves associated with the

forward and backward propagating waves, within a short frequency range near their

band edges, only modes propagating in one direction exist, as shown in Fig. 2. The

relative spectral shift of the bands depends on the magnitude of the external field,

which allows for the design of tunable surface states for one-way light transport.

A similar nonreciprocal behavior has been reported for surface modes at truncated

one-dimensional magnetophotonic crystals.29

6. Conclusion

In summary, we extended the full-electrodynamic LMS method to photonic

structures of gyrotropic spheres with arbitrarily oriented gyration vector. The
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applicability and efficiency of the method is demonstrated by two illustrative ex-

amples of bulk and surface geometries without inversion center, namely a 3D chiral

structure and a semi-infinite fcc crystal of magnetized plasma nanospheres. Spectral

nonreciprocity of bulk and surface states, which emerges as a result of the simulta-

neous lack of space-inversion and time-reversal symmetries, is demonstrated in the

Faraday and Voigt configurations, respectively.
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Appendix A. Derivation of Explicit Expressions for the g̃l
′
m

′

lm
,

ḡl
′
m

′

lm
, ẽl

′
m

′

lm
, ēl

′
m

′

lm
, f̃ l

′
m

′

lm
, f̄ l

′
m

′

lm
Coefficients

In this Appendix we derive explicit expressions for the expansion coefficients g̃l
′m′

lm ,

ḡl
′m′

lm , ẽl
′m′

lm , ēl
′m′

lm , f̃ l′m′

lm , f̄ l′m′

lm , which are slightly different from those of Lin and

Chui20 because of the different definition of the vector spherical waves. The vector

spherical wavefunctions satisfy the following equations

∇× FLlm = 0 ,

∇× FHlm = −iqFElm ,

∇× FElm = iqFHlm ,

∇×∇× FHlm − q2FHlm = 0 ,

∇×∇× FElm − q2FElm = 0 .

(A.1)

Moreover, they are orthogonal in the sense that
∫ 2π

0

∫ π

0

F̄Hlm ·FEl′m′ sin θdθdφ = 0 ,

∫ 2π

0

∫ π

0

F̄Llm · FHl′m′ sin θdθdφ = 0 ,

∫ 2π

0

∫ π

0

F̄Hlm · FHl′m′ sin θdθdφ = f2
l δll′δmm′

∫ 2π

0

∫ π

0

F̄Elm ·FEl′m′ sin θdθdφ =
1

2l + 1
[(l + 1)f2

l−1 + lf2
l+1]δll′δmm′ ,

∫ 2π

0

∫ π

0

F̄Llm · FLl′m′ sin θdθdφ =
1

2l + 1
[lf2

l−1 + (l + 1)f2
l+1]δll′δmm′ ,

∫ 2π

0

∫ π

0

F̄Llm ·FEl′m′ sin θdθdφ =
ψl

2l + 1
[f2

l+1 − f2
l−1]δll′δmm′ ,

(A.2)

where ψl =
√

l(l+ 1) and the bar symbol over a vector spherical wavefunction

denotes complex conjugation only on its angular part.
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It can be readily shown that

ǫz
↔
ǫg

−1
=







ǫ′r −iǫ′κ 0

iǫ′κ ǫ′r 0

0 0 1






, (A.3)

which in dyadic form can be rewritten as

ǫz
↔
ǫg

−1
= (ǫ′r − ǫ′κ)ê−ê+ + (ǫ′r + ǫ′κ)ê+ê− + ê0ê0 , (A.4)

where ǫ′r = ǫr/(ǫ
2
r − ǫ2κ) and ǫ′κ = −ǫκ/(ǫ2r − ǫ2κ) and ê+ = (êx + iêy)/

√
2, ê0 =

êz, ê− = (êx − iêy)/
√
2. Rewritten in terms of ê± and ê0 the vector spherical

wavefunctions take the form

FHlm =
fl
ψl

(
√
2α−m

l Ylm−1ê+ +
√
2αm

l Ylm+1ê− +mYlmê0
)

, (A.5)

FElm =

[

−l√
2ψl

√

(l −m+ 2)(l−m+ 1)

(2l+ 1)(2l+ 3)
Yl+1m−1fl+1

+
l + 1√
2ψl

√

(l +m)(l +m− 1)

(2l − 1)(2l+ 1)
Yl−1m−1fl−1

]

ê+

+

[

l√
2ψl

√

(l +m+ 2)(l +m+ 1)

(2l + 1)(2l+ 3)
Yl+1m+1fl+1

+
−(l+ 1)√

2ψl

√

(l −m)(l −m− 1)

(2l− 1)(2l + 1)
Yl−1m+1fl−1

]

ê−

+

[

−l
ψl

√

(l +m+ 1)(l −m+ 1)

(2l + 1)(2l+ 3)
Yl+1mfl+1

+
−(l+ 1)

ψl

√

(l +m)(l −m)

(2l − 1)(2l+ 1)
Yl−1mfl−1

]

ê0 , (A.6)

FLlm =

[

−1√
2

√

(l −m+ 2)(l −m+ 1)

(2l + 1)(2l+ 3)
Yl+1m−1fl+1

− 1√
2

√

(l +m)(l +m− 1)

(2l− 1)(2l + 1)
Yl−1m−1fl−1

]

ê+

+

[

1√
2

√

(l +m+ 2)(l +m+ 1)

(2l+ 1)(2l + 3)
Yl+1m+1fl+1

+
1√
2

√

(l −m)(l −m− 1)

(2l− 1)(2l + 1)
Yl−1m+1fl−1

]

ê−
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−
[
√

(l +m+ 1)(l −m+ 1)

(2l+ 1)(2l + 3)
Yl+1mfl+1

+

√

(l +m)(l −m)

(2l − 1)(2l + 1)
Yl−1mfl−1

]

ê0 , (A.7)

where αm
l = (1/2)[(l−m)(l+m+1)]1/2. Multiplying Eq. (A.5) by the dyad ǫz

↔
ǫg

−1

gives

ǫz
↔
ǫg

−1
FHlm =

fl
ψl

[
√
2α−m

l Ylm−1(ǫ
′
r + ǫ′κ)ê+

+
√
2αm

l Ylm+1(ǫ
′
r − ǫ′κ)ê− +mYlmê0

]

=
∑

qp

(g̃lmqp FHqp + ẽlmqp FEqp + f̃ lm
qp FLqp) , (A.8)

where use has been made of Eq. (A.4) and the second equality follows from the

expansion of any vector field in terms of the vector spherical wavefunctions. Taking

the scalar product of Eq. (A.8) with F̄Hl′m′ given by

F̄Hl′m′ =
fl′

ψl′

(
√
2α−m′

l′ Y ∗
l′m′−1ê

∗
+ +

√
2αm′

l′ Y
∗
l′m′+1ê

∗
− +m′Y ∗

l′m′ ê
∗
0

)

(A.9)

leads to
∑

qp

F̄Hl′m′ · (g̃lmqp FHqp + ẽlmqp FEqp + f̃ lm
qp FLqp)

=
fl′fl
ψl′ψl

[

2α−m′

l′ α−m
l (ǫ′r + ǫ′κ)Y

∗
l′m′−1Ylm−1

+2αm′

l′ α
m
l (ǫ′r − ǫ′κ)Y

∗
l′m′+1Ylm+1 +m′mY ∗

l′m′Ylm
]

. (A.10)

Integrating both sides of Eq. (A.10) over the solid angle and taking into account

the orthogonality relations (A.2) we obtain

g̃lml′m′ =
(l2 + l −m2)ǫ′r +mǫ′κ +m2

l(l+ 1)
δll′δmm′ . (A.11)

Similarly, taking the scalar product of Eq. (A.8) with F̄El′m′ and F̄Ll′m′ , and inte-

grating over the solid angle results in two linear equations, which can be solved to

give

ẽlml′m′ =

√

(l − 1)(l −m)(l +m)

(l + 1)(2l − 1)(2l+ 1)

mǭ′r − (l + 1)ǫ′κ
l

δl−1,l′δmm′

+

√

(l + 2)(l−m+ 1)(l +m+ 1)

l(2l+ 1)(2l + 3)

mǭ′r + lǫ′κ
l + 1

δl+1,l′δmm′ , (A.12)
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f̃ lm
l′m′ =

√

(l −m)(l +m)

l(l+ 1)(2l − 1)(2l+ 1)

[

mǭ′r − (l + 1)ǫ′κ
]

δl−1,l′δmm′

−

√

(l −m+ 1)(l +m+ 1)

l(l+ 1)(2l + 1)(2l+ 3)

[

mǭ′r + lǫ′κ
]

δl+1,l′δmm′ , (A.13)

where ǭ′r = ǫ′r − 1. In the same manner, by taking the product of dyad ǫz
↔
ǫg

−1
and

vector FElm given by Eq. (A.6) and expanding the resulting vector ǫz
↔
ǫg

−1
FElm

in terms of the vector spherical wavefunctions with expansion coefficients ḡlmqp , ē
lm
qp ,

f̄ lm
qp leads to an equation analogous to Eq. (A.8). Taking the scalar product of this

equation with F̄Hl′m′ , F̄El′m′ and F̄Ll′m′ , and integrating over the solid angle gives

rise to three linear equations, which can be solved to give

ḡlml′m′ =

√

(l + 1)(l −m)(l +m)

(l − 1)(2l− 1)(2l + 1)

mǭ′r + (l − 1)ǫ′κ
l

δl−1,l′δmm′

+

√

l(l −m+ 1)(l +m+ 1)

(l + 2)(2l + 1)(2l+ 3)

mǭ′r − (l + 2)ǫ′κ
l + 1

δl+1,l′δmm′ , (A.14)

ēlml′m′ = δll′δmm′

+
[(2l2 + 2l+ 3)m2 + (2l2 + 2l − 3)l(l+ 1)]ǭ′r + (4l2 + 4l− 3)mǫ′κ

l(l+ 1)(2l − 1)(2l+ 3)
δll′δmm′

−

√

(l − 2)(l + 1)(l −m− 1)(l −m)(l +m− 1)(l +m)

(l − 1)l(2l− 3)(2l+ 1)

ǭ′r
2l− 1

δl−2,l′δmm′

−

√

l(l+ 3)(l −m+ 1)(l−m+ 2)(l +m+ 1)(l +m+ 2)

(l + 1)(l + 2)(2l + 1)(2l+ 5)

ǭ′r
2l + 3

δl+2,l′δmm′ ,

(A.15)

f̄ lm
l′m′ =

(l2 + l − 3m2)ǭ′r − (2l − 1)(2l + 3)mǫ′κ
√

l(l + 1)(2l − 1)(2l + 3)
δll′δmm′

−

√

(l + 1)(l −m− 1)(l −m)(l +m− 1)(l +m)

l(2l− 3)(2l+ 1)

ǭ′r
2l− 1

δl−2,l′δmm′

+

√

l(l−m+ 1)(l −m+ 2)(l +m+ 1)(l +m+ 2)

(l + 1)(2l + 1)(2l+ 5)

ǭ′r
2l + 3

δl+2,l′δmm′ .

(A.16)
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