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Metal-coated magnetic nanoparticles in an optically active medium: A nonreciprocal metamaterial
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We report on the optical response of a nonreciprocal bianisotropic metamaterial, consisting of spherical,
metal-coated magnetic nanoparticles embedded in an optically active medium, thus combining gyrotropy,
plasmonic resonances, and chirality in a versatile design. The corresponding effective medium is deduced by
an appropriate two-step generalized Maxwell-Garnett homogenization scheme. The associated photonic band
structure and transmission spectra are obtained through a six-vector formulation of Maxwell equations, which
provides an efficient framework for general bianisotropic structures going beyond existing approaches that involve
cumbersome nonlinear eigenvalue problems. Our results, analyzed and discussed in the light of group theory,
provide evidence that the proposed metamaterial exhibits some remarkable frequency-tunable properties, such as
strong, plasmon-enhanced nonreciprocal polarization azimuth rotation and magnetochiral dichroism.
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I. INTRODUCTION

The interaction of optical fields with magnetic materials
breaks local time-reversal symmetry, providing a versatile
route for designing nonreciprocal photonic components based,
e.g., on the Faraday rotation effect. In particular, with the
incorporation of metallic nanostructures that support localized
plasmon modes, the inherently weak magneto-optical cou-
pling at visible and near-infrared frequencies can be greatly
enhanced in subwavelength volumes, thus allowing for the
realization of ultracompact magneto-optical devices [1–5].
However, spectral nonreciprocity is, in principle, encountered
in systems which lack both time-reversal and space-inversion
symmetries [6], and various designs of macroscopic magne-
tophotonic structures without an inversion center have been
proposed and elaborated for this purpose [7–10]. Space-
inversion symmetry can also be removed by the presence of
inherently optically active materials or substances, due to a
chiral arrangement of their atomic/molecular constituents or
an inherent chiral structure of their molecules themselves, and
composite structures with such optically active components are
promising candidates for exotic optical functions as in photonic
band engineering [11–13], nonlinear optics [14], and negative
refraction [15].

In the present paper, we seek to combine magnetic func-
tionalities, plasmonic resonances, and chirality in a versatile
system consisting of an assembly of metal-coated magnetic
nanoparticles immersed in an optically active medium. Mag-
netic properties are exhibited by the core material, the metallic
shell introduces plasmonic resonances, while chirality is pro-
vided by the host. This composite medium can be treated as an
optically uniform metamaterial in the visible and near-infrared
parts of the spectrum since the wavelength is much longer
than the size of the particles and the distances between them,
and exhibits an intriguing nonreciprocal optical response. The

*aristi.christofi@gmail.com

remainder of the paper is organized as follows: In Sec. II, we de-
velop a versatile six-vector formalism for calculating the eigen-
modes of the electromagnetic (EM) field in a homogeneous,
in general bianisotropic, medium as well as the transmission,
reflection, and absorption coefficients of layered structures of
such media. Moreover, we report closed-form expressions for
the homogenization of the composite medium under consid-
eration using a two-step Maxwell-Garnett effective-medium
approximation. In Sec. III, we undertake a comprehensive
analysis of the photonic dispersion diagram of the given meta-
material, in conjunction with associated transmission spectra,
and discuss some remarkable nonreciprocal effects, namely,
polarization azimuth rotation and magnetochiral dichroism.
Our results are summarized in Sec. IV.

II. THEORY

A. Electromagnetic waves in bianisotropic media

In the class of materials that go under the generic name
of bianisotropic materials, the linear response to EM fields is
described by the phenomenological constitutive relations(

1
ε0

D
1√
ε0μ0

B

)
=

(
ε ξ

ζ μ

)(
E√
μ0

ε0
H

)
≡ M

(
E√
μ0

ε0
H

)
(1)

between the electric and magnetic fields, E (in V/m) and H
(in A/m), and the electric and magnetic flux densities, D (in
C/m2) and B (in Wb/m2), where ε0 and μ0 are the vacuum
electric permittivity and magnetic permeability, respectively.
M is defined as a 6 × 6 dimensionless matrix, which contains
the relative electric permittivity ε, magnetic permeability μ,
and magnetoelectric cross-coupling ξ and ζ tensors. The latter
are nonzero, e.g., for optically active chiral media, as we shall
see below. Maxwell equations for EM fields with exp(−iωt)
harmonic time dependence in such a medium can be cast in
the form of a generalized eigenvalue problem,(
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where Z = √
μ0/ε0 and c = 1/

√
ε0μ0 are the vacuum wave

impedance and velocity, respectively. We note that for ω �= 0,
the divergence Maxwell equations are automatically satisfied
[16].

Seeking solutions of Eq. (2) in the form of plane waves,
E(r) = E0 exp(iq · r), H(r) = H0 exp(iq · r), with given x

and y components of wave vector q, leads to the following
eigenvalue-eigenvector equation for the qz component and
the corresponding polarization eigenvectors ê = E0/E0, h =
ZH0/E0, where E0 = |E0|,[
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The above 6 × 6 linear eigenvalue problem can be solved by
standard numerical algorithms [17], which are much faster than
quadradic eigenvalue solvers [18,19] as required in alternative
3 × 3 matrix formulations of Maxwell equations [5]. We de-
note the four physically acceptable (nonzero eigenvalue) solu-
tions of Eq. (3) by a superscript s = +(−), which corresponds

to waves propagating or decaying in the positive (negative)
z direction, and a subscript p = 1,2, which labels the two
linearly independent polarization eigenmodes. The electric
and magnetic field components of these waves, with wave
vector qs

p = q‖ + qs
z;p̂z and polarization eigenvectors ê(qs

p)
and h(qs

p), are given by

E(r,t) = Re
{
E0 exp

[
i
(
qs

p · r − ωt
)]̂

e
(
qs

p

)}
,

H(r,t) = 1

Z
Re

{
E0 exp

[
i
(
qs

p · r − ωt
)]

h
(
qs

p

)}
. (5)

We now consider a planar interface between two different
homogeneous, in general bianisotropic, media: (1) on the left
and (2) on the right of the interface. We assume that the
interface is perpendicular to the z axis, which is directed from
left to right, at z = 0. Let us consider a plane EM wave of
amplitude Ein, angular frequency ω, wave vector q+(1)

p′ and

polarization eigenvectors ê(q+(1)
p′ ), h(q+(1)

p′ ), incident on the
interface from the left. Scattering at the interface gives rise
to reflected and transmitted plane waves of wave vectors q−(1)

p

and q+(2)
p , p = 1,2, respectively, and associated polarization

eigenvectors. Time invariance and translation invariance par-
allel to the interface imply that ω and q‖ remain the same for all
of these waves, while linearity imposes that the corresponding
amplitudes are proportional to Ein. Let us write them as
S−+

pp′ Ein and S++
pp′ Ein, respectively. Continuity of the tangential

components of the wave field at the interface yields
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for p′ = 1,2. Similarly, for incidence on the interface from the right, we obtain the corresponding reflection and transmission
amplitudes, S+−

pp′ and S−−
pp′ , respectively, from the linear system,⎛⎜⎜⎜⎜⎝
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for p′ = 1,2. We note that the 4 × 4 matrices on the left-hand
side of Eqs. (6) and (7) are identical, so a single lower-upper
decomposition has to be performed prior to back substitution
[17].

In order to evaluate the scattering properties of multilayers
of, in general, bianisotropic materials, it is convenient to
express the waves on the left (right) of a given interface with
respect to an appropriate origin at −dl (dr ) from the center.
Referred to these new origins, the scattering matrix elements
of the interface, for given ω and q‖, become
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We obtain the reflection and transmission matrices of two
consecutive interfaces, n and n + 1, by combining the matrices
of the two interfaces so as to describe interlayer multiple
scattering to any order. One can easily prove that the reflection
and transmission matrices for the pair of interfaces, denoted
by Q(n,n + 1), are

QI(n,n + 1) = QI(n + 1)[I − QII(n)QIII(n + 1)]−1QI(n),

QII(n,n + 1) = QII(n + 1) + QI(n + 1)QII(n)

× [I − QIII(n + 1)QII(n)]−1QIV(n + 1),
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QIII(n,n + 1) = QIII(n) + QIV(n)QIII(n + 1)

× [I − QII(n)QIII(n + 1)]−1QI(n),

QIV(n,n + 1) = QIV(n)[I − QIII(n + 1)QII(n)]−1QIV(n + 1).

(9)

All matrices refer, of course, to the same ω and q‖. We note
that the waves on the left [right] of the pair of interfaces are
referred to an origin at −dl(n) [dr (n + 1)] from the center of
the nth [(n + 1)th] interface. It is obvious that one can repeat
the above process to obtain the reflection and transmission
matrices of three consecutive interfaces, by combining those
of the pair of the first interfaces with those of the third interface;
and that we can in similar fashion repeat the process to obtain
the scattering matrices of a slab which comprises any finite
number of interfaces.

The transmittance T and reflectivity R of the slab are de-
fined as the ratio of the transmitted and reflected, respectively,
energy flux to the energy flux associated with the incident wave.
Integrating the Poynting vector over the x − y plane, on the
appropriate side of the slab each time, and taking the time
average over a period T = 2π/ω, we obtain
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for a plane EM wave of angular frequency ω, wave vector q+(L)
p′ ,

and polarization eigenvectors ê(q+(L)
p′ ), h(q+(L)

p′ ), incident on
the slab from the left, where by (L) and (R) we denote the
homogeneous, in general bianisotropic, media which extend
to infinity on the left and right sides of the slab, respectively,
and QI, QIII are the corresponding transmission and reflection
matrices. If lossy materials are present, the absorbance A is
calculated from energy conservation: A = 1 − T − R.

B. Effective-medium approximation

In the present work, we shall be concerned with composite
nanoparticles consisting of a dielectric magnetic spherical core
of radius Sc coated with a concentric spherical shell of outer
radius S. Generally, the optical response of a polycrystalline
magnetic material, such as the core material, in the visible and
infrared parts of the spectrum is described by a constitutive
matrix, defined in Eq. (1), of the form

Mg =

⎛⎜⎜⎜⎜⎜⎝
εg −ig 0 0 0 0
ig εg 0 0 0 0
0 0 εg 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠, (11)

if we consider the magnetization along the z axis. The elements
of this matrix are in general complex functions of frequency
due to the dissipative and dispersive behavior of the material.
We note that the magneto-optical coupling is accounted for by
the nondiagonal elements, which change sign upon magnetiza-
tion reversal and vanish above the Curie temperature. The shell

is made of a nonmagnetic plasmonic material characterized by

Mp =

⎛⎜⎜⎜⎜⎜⎝
εp 0 0 0 0 0
0 εp 0 0 0 0
0 0 εp 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠. (12)

We shall assume that εp has the simple yet effective Drude
form [20]

εp = 1 − ω2
p

ω(ω + iγ )
, (13)

where ωp is the bulk plasma frequency and γ is the inverse
relaxation time of the conduction-band electrons, which ac-
counts for the dissipative losses.

The optical response of an assembly of such magneto-
plasmonic nanoparticles, embedded in an optically active
homogeneous host medium characterized by a bi-isotropic
constitutive matrix of the form

Mh =

⎛⎜⎜⎜⎜⎜⎝
εh 0 0 iγh 0 0
0 εh 0 0 iγh 0
0 0 εh 0 0 iγh

−iγh 0 0 1 0 0
0 −iγh 0 0 1 0
0 0 −iγh 0 0 1

⎞⎟⎟⎟⎟⎟⎠, (14)

at visible and infrared frequencies, can be described by
the effective-medium approximation because the size of the
particles is much shorter than the wavelength. An effective
constitutive matrix M can be defined in the spirit of the
quasistatic Maxwell-Garnett homogenization method through
[21–23]

(M − Mh)(M + 2Mh)−1 = f2(Ms − Mh)(Ms + 2Mh)−1,

(15)

where f2 is the volume filling fraction of the particles and Ms is
an effective constitutive matrix of the core-shell particle given
by

(Ms − Mp)(Ms + 2Mp)−1 = f1(Mg − Mp)(Mg + 2Mp)−1,

(16)

with f1 = (Sc/S)3 being the fractional volume of the compos-
ite spherical particle occupied by the core. The validity of the
Maxwell-Garnett mixing rules is not questionable in our case
[24,25].

Equations (15) and (16) are of the form (X − A)(X +
2A)−1 = f (B − A)(B + 2A)−1 and can be readily solved:

(X − A)(X + 2A)−1 = f (BA−1 − 1)(BA−1 + 2)−1

= f (BA−1 + 2)−1(BA−1 − 1)

⇒ (BA−1 + 2)(X − A) = f (BA−1 − 1)(X + 2A)

⇒ (BA−1 + 2AA−1 − f BA−1 + f AA−1)X

= 2(1 − f )A + (1 + 2f )B

⇒ X = A[(2 + f )A + (1 − f )B]−1[2(1 − f )A

+(1 + 2f )B].
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FIG. 1. A schematic view of the metamaterial under considera-
tion: An assembly of composite spherical nanoparticles consisting of
a magnetic garnet core (εg = 6.25, g = 0.06), of radius Sc, coated
with a lossless plasmonic metal shell, of outer radius S (Sc/S = 0.8),
embedded in an optically active host matrix (εh = 2.25, γh = 0.1)
with volume filling fractionf2 = 0.50. The direction of magnetization
is taken along the z axis.

III. RESULTS AND DISCUSSION

A. Photonic band structure and transmittance

In the present work, we study the optical properties of a
specific realization of the bianisotropic metamaterial described
in the previous section, i.e., an assembly of spherical mag-
netoplasmonic nanoparticles with a core-shell morphology
embedded in an optically active host matrix. A schematic view
of this metamaterial is depicted in Fig. 1. We assume, for sim-
plicity, that the particles consist of a dispersionless magnetic
dielectric core, characterized by a constitutive matrix given
by Eq. (11) with εg = 6.25 and g = 0.06, values achievable
with magnetic garnets such as bismuth-substituted yttrium-
iron garnet [26–28], and a plasmonic shell made of a noble
metal material such as silver or gold, described by the Drude
relative dielectric function [20] εp = 1 − ω2

p/ω2 in Eq. (12),
neglecting losses for now. This function naturally introduces
ωp as the frequency unit and c/ωp as the length unit, which we
shall adopt throughout the paper. We note that considering a
typical value h̄ωp = 10 eV, c/ωp corresponds to about 20 nm.
We further assume that the host medium is characterized by
the bi-isotropic constitutive matrix of Eq. (14) with εh = 2.25
and γh = 0.1. This value of γh may seem unusually high
for a naturally occurring optically active material; however,
there are substances with very strong chirality, an example
being helical polymers. For instance, it has been reported
that poly-L-lactic acid exhibits a huge optical rotatory power
[29], which corresponds to γh ∼ 10−2. Moreover, even larger
values of the chirality parameter can be achieved with chiral
metamaterials [30]. For the relevant geometric parameters, we
consider that the ratio of the core to total particle radius, Sc/S,
equals 0.8, which corresponds to f1 = 0.512 in Eq. (16), and

FIG. 2. Left: Photonic band structure of the metamaterial de-
scribed in Fig. 1 along the magnetization axis. In the inset, we show
schematically the hybridization between an extended and a narrow
band, of the same symmetry, which leads to the opening of a frequency
gap about the crossing point. Right: Corresponding transmission
spectrum of a finite slab of thickness d = 7c/ωp, in air, magnetized
perpendicular to its surfaces, for linearly polarized light incident in
the direction of magnetization.

that the nanoparticles occupy a fractional volume f2 = 0.50
of the composite medium.

The optical response of this medium at visible and infrared
frequencies can be described by an effective constitutive matrix
M, obtained by Eqs. (15) and (16) because, at wavelengths
much longer than the size of the particles and the interparticle
spacing, the medium is effectively homogeneous, yet bian-
isotropic. This type of metamaterial lacks both space-inversion
and time-reversal symmetries, but is invariant under proper
rotations about the direction of magnetization, which is taken
to be along the z axis. Therefore, according to group theory
[31], the corresponding dispersion curves of the EM field are
rotationally symmetric about the z axis, i.e., they depend on
the magnitude but not on the direction of q‖ and

ων(q‖,qz) �= ων(q‖, − qz), (17)

where ν is a band index.
In a dielectric, in general bianisotropic, medium, along any

direction, the dispersion relation has two extended branches
corresponding to the two linearly independent transverse
polarization eigenmodes of waves propagating in this medium.
However, for the structure under consideration, the effective-
medium approximation describes, also, localized dipole plas-
mons at the two metal-dielectric interfaces [32,33] and, thus,
in addition to the extended dispersion curves, six narrow
bands (three originating from the cavitylike and three from the
particlelike collective dipole plasmon modes) are obtained as
well. In general, when two bands of the same symmetry cross
each other, level repulsion leads to the opening of a frequency
gap about the crossing point. This can be clearly observed in the
left-hand diagram of Fig. 2, which depicts the photonic band
structure of the metamaterial under study along the direction
of magnetization. Two quite sizable gaps appear, indeed, in
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FIG. 3. An enlarged view of Fig. 2 about the lower band gap, with
corresponding circular-polarization-resolved transmission spectra.

the frequency regions of the cavity- and particlelike plasmon
modes, where the associated flat bands cross the extended
dispersion curves. The corresponding transmittance of a finite
slab of the given metamaterial is vanishingly small over
the range of these so-called hybridization gaps and exhibits
Fabry-Pérot oscillations outside the gap regions due to multiple
reflections at the surfaces of the slab, as shown in the right-hand
diagram of Fig. 2.

The modes of the EM field propagating along the z direction
in this metamaterial have the symmetry of the irreducible
representations of the C∞ group, which consists of all proper
rotations about the z axis. Since C∞ is an Abelian group, all of
its irreducible representations are one dimensional, thus imply-
ing that the corresponding photonic bands are nondegenerate.
A dipole vector field (the effective-medium approximation
assumes dipole fields) is projected onto the m = −1,0, and 1
irreducible representations of C∞, which correspond to right-
circular polarization (RCP), longitudinal, and left-circular
polarization (LCP) modes, with eigenvectors (̂x − îy)/

√
2, ẑ,

and (̂x + îy)/
√

2, respectively. The two dispersionless (flat)
bands, which are clearly visible in the left-hand diagram of
Fig. 2, correspond to longitudinal modes stemming from the
cavity- and particlelike dipole plasmons and their position
is obtained from the condition det M = 0. The separation
between LCP and RCP dispersion curves and the nonreciprocal
characteristics of the band diagram, which are not discernible
in the scale of Fig. 2, can be clearly observed in Fig. 3, in an
enlarged view in the region of the lower-frequency gap. We
note that the LCP and RCP bands can be excited by light of the
appropriate circular polarization incident normally on a slab of
the metamaterial magnetized perpendicular to its surfaces, as
shown in Fig. 3, while the longitudinal bands are optically
inactive. Along an arbitrary direction, all bands belong, of
course, to the trivial representation of the trivial group and
are optically active.

Hereafter we shall focus on the spectral region about the
lower band gap, which corresponds to visible or near-infrared
frequencies and the approximations involved are well justified
[21]. We note, however, that the dispersion diagram can
be tuned in frequency by varying the composition of the
nanoparticles and their concentration in the host medium,
which are controlled by the parameters f1 and f2, respectively.

B. Nonreciprocal polarization rotation

A linearly polarized light beam, incident normally on a
slab of the given metamaterial magnetized perpendicular to
its surfaces, of angular frequency ω within the common region
of LCP and RCP bands, is decomposed into an LCP and an
RCP wave, which propagate through the slab with different
phase velocities ω/qz;1 and ω/qz;2, respectively. If the LCP
and RCP components of the transmitted wave have the same
amplitude, then the transmitted wave is linearly polarized with
a polarization direction at an angle

φ = 1
2 (qz;2 − qz;1)d (18)

relative to the polarization direction of the incident wave,
where d is the thickness of the slab and positive φ means an
anticlockwise rotation. As can be seen in the left-hand diagram
of Fig. 2, a dispersion curve close to the frequency gap bends
and flattens (dω/dqz −→ 0), so that the difference between the
wave numbers of the RCP and LCP bands, qz;2 − qz;1, increases
as ω approaches the gap (of course at frequencies where
both bands coexist). Therefore, according to Eq. (18), strong
polarization azimuth rotation is expected near the frequency
gap.

It is worth noting that in the case under consideration, there
is no polarization conversion between LCP and RCP waves
because these modes span two nondegenerate orthogonal
subspaces. This implies that the 2 × 2 complex transmission
matrix of a finite slab, QI, in the basis of circularly polarized
waves is a diagonal matrix. Its (diagonal) elements, QI

1 and
QI

2, are defined as the ratio of the amplitude of the transmitted
to that of the incident LCP and RCP wave, respectively. The
transmitted wave is, in general, elliptically polarized with the
long axis of the ellipse forming an angle,

φ = 1
2

(
arg QI

2 − arg QI
1

)
, (19)

with the polarization direction of the incident wave and with
ellipticity angle

χ = arctan

∣∣QI
2

∣∣ − ∣∣QI
1

∣∣∣∣QI
2

∣∣ + ∣∣QI
1

∣∣ . (20)

As can be seen in the right- and left-hand diagrams of
Fig. 4, the ellipticity angle is relatively small and exhibits small
oscillations around zero. We note that a linearly polarized trans-
mitted wave is obtained if χ = 0. In the same diagrams, we also
depict the variation of φ versus frequency, as calculated from
both the dispersion diagram of the infinite metamaterial, by
Eq. (18), and the transmitted wave through the given finite slab,
using Eq. (19). The results obtained from the transmission cal-
culations oscillate around the smooth curve deduced from the
band structure, due to finite-size effects. It can be seen that the
polarization azimuth rotation increases as we approach the flat
region at the top of the bands, where they have a large horizontal
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χ

φ

x

y

y

x

q d

FIG. 4. Middle diagram: An enlarged view of the dispersion
diagram of Fig. 2 below the lower band gap. Right- and left-hand di-
agrams: Ellipticity (bright curves) and azimuth rotation (dark curves)
angles of linearly polarized light transmitted through a metamaterial
slab of thickness d = 7c/ωp, in air, magnetized perpendicular to its
surfaces, in (+) and opposite to (−) the magnetization direction.
A schematic is displayed in the inset.

splitting. In the backward direction, the optical activity induced
by the chiral host medium partly counterbalances the magnetic
optical activity (Faraday rotation), while in the forward direc-
tion chirality and magnetism contribute constructively to yield
a strongly enhanced polarization azimuth rotation.

C. Magnetochiral dichroism

Magnetochiral dichroism is a relatively weak, nonreciprocal
absorption effect, which can be manifested in a chiral medium
magnetized parallel to the direction of propagation of an
unpolarized light beam. It is usually defined by the normalized
anisotropy factor 
A/〈A〉, with 
A = A+ − A− and 〈A〉 =
(A+ + A−)/2, where A± is the absorbance of unpolarized
light incident on a slab of the material in (+) and opposite to (−)
the direction of magnetization [34,35]. Unpolarized light can
be regarded as an incoherent superposition of LCP and RCP or,
in general, of any two orthonormal polarization, light modes.
Obviously, in the case under consideration, symmetry implies
that unpolarized light is equivalent to linearly polarized light.

In order to study magnetochiral dichroism effects in the
metamaterial under consideration, we take into account ab-
sorptive losses assuming εg = 6.25 + i0.001 for the magnetic
garnet core and γ /ωp = 0.002 in Eq. (13) for the plasmonic
shell. As can be seen in Fig. 5, considerable magnetochiral
dichroism, which corresponds to values of the normalized
anisotropy factor as large as 0.004, is obtained in the lowest-
frequency band. The variations of 
A/〈A〉 follow the Fabry-

FIG. 5. Magnetochiral dichroism of a slab of the metamaterial
under study, of thickness d = 7c/ωp, magnetized perpendicular to its
surfaces, at normal incidence, in the region of the lowest-frequency
band. Absorptive losses are taken into account assuming εg = 6.25 +
i0.001 for the magnetic garnet core and γ /ωp = 0.002 for the
plasmonic shell.

Pérot oscillations in the region where natural and magnetic
optical activity effects are appreciable, but only up to a certain
frequency, above which the too-sharp Fabry-Pérot resonances
are wiped out by absorption since their lifetime is much longer
than the absorption time.

IV. CONCLUSION

In summary, we proposed and analyzed a generic type of
nonreciprocal, frequency-tunable optical metamaterial, which
consists of metal-coated dielectric spherical nanoparticles im-
mersed in an optically active host medium. This metamaterial,
which can be synthesized in the laboratory (see Ref. [36]
and references therein), combines gyrotropy, plasmonic res-
onances, and chirality, and exhibits some remarkable proper-
ties, such as nonreciprocal polarization azimuth rotation and
magnetochiral dichroism, which stem from the simultaneous
lack of time-reversal and space-inversion symmetries and
are enhanced by collective resonant plasmon modes. We
calculated the optical properties of this medium, using a
six-vector formulation of Maxwell equations and a two-step
homogenization approach based on a proper generalization
of Maxwell-Garnett effective-medium theory, and provided a
consistent interpretation of the underlying physics.
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