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We present an extended version of the layer-multiple-scattering method, which is ideally
suited for the study of photonic crystals of different kinds of particles, encompassing
homogeneous and multicoated chiral and nonchiral spheres, gyrotropic spheres, as well as
homogeneous nonspherical particles. The efficiency of the method is demonstrated on
specific examples of planar magnetoplasmonic nanostructures that lack, simultaneously,
time-reversal and space-inversion symmetries. Nonreciprocal transport of light at the
(001) surface of a semi-infinite face centered cubic (fcc) crystal of plasma nanospheres
under the action of an external, in-plane, static magnetic field and of surface plasmon
polaritons at the surface of a plasmonic material coated with an overlayer of magnetized
garnet nanospheres is demonstrated in the Voigt geometry.
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1. Introduction

Spectral nonreciprocity is in principle encountered in
systems that lack both space-inversion and time-reversal
symmetries [1]. Nonreciprocal electromagnetic (EM)
devices, such as isolators and circulators, operating at
radio and microwave frequencies can be realized using
ferrite materials biased by a static magnetic field, which
breaks local time-reversal symmetry and induces a strong
gyrotropic response. However, at infrared and visible
frequencies the gyrotropic response of materials is rather
weak and can be described by a relative magnetic perme-
ability 4, =1 and, assuming the magnetization along the
z-direction, a relative electric permittivity tensor of the form
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with e, < 1. Therefore, in this case, the design of efficient
miniaturized nonreciprocal optical components is much
more delicate and requires a careful investigation. In this
respect, the development of full electrodynamic theoretical
methods that can accurately describe low-symmetry photo-
nic architectures without space-inversion and time-reversal
symmetries with reduced computational effort is of primary
importance. On the other hand, combining plasmonics with
magnetism offers impressive opportunities for controlling
the light-matter interaction in tailored nanostructures and
designing on-chip nonreciprocal optical components. Plas-
mons confine light in subwavelength dimensions and greatly
enhance optical fields locally, which allows one to achieve a
strong magneto-optic activity [2].

In this paper we present an extended version of the
layer-multiple-scattering (LMS) method, a full electrody-
namic computational methodology which is ideally suited
for studying various configurations of nonreciprocal mag-
netophotonic nanostructures. The efficiency of the method
is demonstrated on two specific planar architectures which
lack an inversion center: A surface of a semi-infinite crystal
of magnetized plasma nanospheres and a two-dimensional


www.sciencedirect.com/science/journal/00224073
www.elsevier.com/locate/jqsrt
http://dx.doi.org/10.1016/j.jqsrt.2013.12.020
http://dx.doi.org/10.1016/j.jqsrt.2013.12.020
http://dx.doi.org/10.1016/j.jqsrt.2013.12.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jqsrt.2013.12.020&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jqsrt.2013.12.020&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jqsrt.2013.12.020&domain=pdf
mailto:aristi@ims.demokritos.gr
http://dx.doi.org/10.1016/j.jqsrt.2013.12.020
http://dx.doi.org/10.1016/j.jqsrt.2013.12.020

A. Christofi et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 146 (2014) 34-40 35

(2D) periodic array of magnetic garnet nanospheres depos-
ited on a homogeneous plasmonic material substrate.

2. Layer-multiple-scattering method for photonic
crystals

The LMS method provides a versatile and efficient
computational framework for fast full-electrodynamic cal-
culations of the optical properties of structures consisting
of successive, possibly different layers of particles arranged
with the same 2D periodicity in homogeneous host mate-
rials. Here we outline the main characteristics of the
method by focusing, in particular, on the way the scatter-
ing matrices of single particles and 2D periodic arrays of
these particles are employed in order to calculate the
complex reflection and transmission coefficients of finite
stacks of such arrays, as well as the complex photonic band
structure of a corresponding infinite three-dimensional
(3D) crystal. In addition, by solving appropriate secular
equations that involve combinations of scattering
matrices, one can identify modes localized within a finite
slab built as a sequence of 2D periodic arrays of particles or
homogeneous layers (slab modes), or at the surface of a
corresponding semi-infinite crystal (surface states).
Throughout this section we try to provide a schematic,
more intuitive description of the method, avoiding exten-
sive formalism as much as possible. Details of each step
can be found elsewhere [3-14].

The method proceeds by first describing a single
scattering process, as shown schematically in Fig. 1. The
spatial part of the electric field associated with a mono-
chromatic EM wave of angular frequency o with exp(—iwt)
time dependence in a homogeneous, isotropic medium
characterized by a relative electric permittivity ¢ and
magnetic permeability x is expanded into regular vector
spherical waves about a given origin of coordinates as
follows:
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where q=w,/eu/c with c¢ being the velocity of light in
vacuum, j(qr) are the spherical Bessel functions, which are
finite everywhere, X;,,(f) are the vector spherical harmo-
nics, and ad,., P=E,H, are appropriate expansion coeffi-
cients. When the wave described by Eq. (2) impinges on a
particle centered at the origin of coordinates, it is scattered
by it, so that the total wave field outside the particle
consists of the incident wave and a scattered wave that can
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Fig. 1. Schematic representation of scattering by a single particle.

be written in the form
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where h;"(qr) are the spherical Hankel functions that
describe outgoing spherical waves: h;" (qr)~ (—i) exp
(igr)/iqr as r—oo. Using the appropriate spherical-wave
expansion for the field inside the particle and applying the
usual continuity boundary conditions at the interface(s),
one can express the expansion coefficients, ap ., of the
scattered wave in terms of those of the incident wave, a,,
through the so-called scattering T matrix as follows:

+ 0
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We note that, in general, the T matrix is nondiagonal with
respect to P, [ and m. Only in the special case of spherical,
isotropic, nonchiral particles it is a diagonal matrix, inde-
pendent of m. For a homogeneous sphere it is given by the
closed-form solutions of the Mie scattering problem [15].
For a sphere consisting of a number of concentric homo-
geneous spherical shells an analytical solution can still be
derived, but it is more efficient to evaluate the T matrix
using recursive algorithms [8,16,17]. For chiral homoge-
neous or coated spheres the T matrix is no longer diagonal
with respect to P, which reflects the mixing of E- and
H- polarization modes upon scattering because of chirality
[9,11,18-21]. In the case of a gyrotropic sphere, the major
complication arises due to the fact that, at a given
frequency, the multipole expansion of the EM field inside
the sphere involves vector spherical waves of different
wave numbers. These wave numbers and the associated
expansion coefficients are given by the eigenvalues and
eigenvectors of a matrix that involves only the elements of
the corresponding relative electric permittivity tensor and
angular momentum numbers. Following this approach,
which has been elaborated by different authors [12-14],
we finally obtain a block-diagonal T matrix in the given
spherical-wave representation from a set of coupled linear
equations that relate the expansion coefficients of the
scattered field to those of the incident field. Finally, for
nonspherical scatterers no analytic solution exists and the
T matrix needs to be calculated numerically. This can be
done by employing the extended boundary condition
method [22-24], properly adapted to the LMS formalism
[6]. As a future step, and in order to further generalize the
LMS method, the so-called invariant imbedding T-matrix
approach, which treats irregular and inhomogeneous par-
ticles as multi-layered inhomogeneous spheres and pro-
ceeds by computing the T matrix recursively from the
inscribed sphere to the circumscribed sphere [25-27], can
be straightforwardly implemented into the method. It is
worth noting that, in all of the above cases, a local
dielectric function is assumed for the individual scatterers,
though nonlocal behavior can also be treated in special
cases [28].

When particles are assembled in a plane, say the x—y
plane, multiple scattering takes place and the wave imping-
ing on a given particle “i” is the sum of the externally
incident wave, described by expansion coefficients ag,m, plus
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the waves scattered by all the other particles, described by
expansion coefficients by, . The latter produce a secondary
wave incident on the i-th particle with expansion coeffi-

cients

le Z Z ‘Ql[;;m PIm l;rll/m” (5)
where _Q}il’m p1m AT€ proper pro?agator functions in the host
medium (£, =0 for i=1i") [3-5]. On the other hand,

the wave scattered by the i-th particle is given by the
corresponding particle T matrix according to Eq. (4)
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and, substituting Eq. (5) into Eq. (6), the following system of
linear equations is obtained:
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Solving Eq. (7) determines uniquely the total scattered field
in terms of the known externally incident field, as shown
schematically in Fig. 2. It should be pointed out that the
above-described multiple-scattering technique is in princi-
ple exact for any particle arrangement, provided that the
spheres circumscribing the individual particles do not over-
lap with each other. In the special case that interests us here,
where the particles are arranged in 2D periodic arrays, the
infinite sum over the scatterers can be efficiently evaluated
numerically using Ewald summation techniques [4,5,29].
Once in-plane multiple scattering is evaluated in the
given spherical-wave basis, it is convenient to change the
expansion basis and treat interlayer scattering using a
plane-wave basis instead. The combination of these two
different basis sets is one of the key characteristics to
which the LMS method owes its efficiency. Let us assume a
plane wave incident on a 2D periodic array of scatterers.
Due to the 2D periodicity of the structure (taken to be in
the x—y plane), it is convenient to write the component of
the wave vector of the incident plane wave parallel to the
periodic array, q,, as q, =k, +g, where k,, the reduced
wave vector in the surface Brillouin zone (SBZ), is a
conserved quantity in the scattering process and g is a
certain reciprocal vector of the given 2D lattice. Therefore,
the wave vector of the incident wave has the form
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Fig. 2. Schematic representation of multiple scattering in an array of
particles.

K& =k, +g +[q°—(k, +g)*]'"/?€;, where q is the wave
number, €, is the unit vector along the z-axis, and the +
or — sign refers to incidence from the left (z < 0) or from
the right (z>0), i.e.,, a wave propagating towards the
positive or the negative direction, respectively. Since Kk;
and « are conserved quantities in the elastic scattering
process, the scattered field will consist of a series of plane
waves with wave vectors

—ku +g+[¢° -k +8)%"%e, =k +g+K+ez, vg
(8)

and polarizations along €; and €, (polar and azimuthal
unit vectors, respectively, associated with every K,s = + ).
It is worth noting that though the scattered field consists,
in general, of a number of diffracted beams corresponding
to different 2D reciprocal-lattice vectors g, only beams for
which KgiZ is real constitute propagating waves. When
(k; +g)%> > ¢q?, we have an evanescent beam and the
corresponding unit vectors €;, €, become complex, but
they are still orthogonal: €,-€, =&y, p(p')=1,2. The
amplitudes of the transmitted and reflected plane wave
beams are obtained from the amplitude of the incident
plane wave as follows:

[Etl’]gtj = ngp;g’p'[EinC]gp'
(Evtlgp = Qgpgp [Finclgyp - )

where Q' and Q™ are appropriate transmission and
reflection matrices for incidence from the left, as shown
schematically in Fig. 3. Similar equations hold for inci-
dence from the right, with transmission and reflection
matrices Q' and Q", respectively [3-5].

For a composite structure consisting of several layers,
the Q matrices of the individual layers can be combined so
as to describe interlayer multiple scattering to any order,
by including all propagating and evanescent components

+
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Fig. 3. The Q matrices of two successive layers are obtained from those of
the individual layers, taking into account interlayer multiple scattering to
any order.
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of the wave field necessary to obtain convergence. In this
procedure one can combine the Q matrices of layers with
the same or different scatterers, and/or of homogeneous
slabs, in a manner similar to the adding-doubling method
used for solving radiative transfer [30,31], as shown
schematically in Fig. 3. The only limitation is k; conserva-
tion, which is ensured if all periodic layers in the slab have
the same 2D periodicity. In this way one obtains closed-
form expressions for the Q matrices of the composite
structure, which contain the complex transmission and
reflection coefficients of the slab and essentially define the
so-called scattering S matrix [4-6]. It is then straightfor-
ward to evaluate the transmittance, 7, and the reflectance,
R, of the given slab by the ratio of the transmitted or
reflected energy flux to the energy flux associated with the
incident wave. The corresponding extinction is given, as
usual, by the negative natural logarithm of the transmit-
tance. If lossy materials are present, the absorbance, A4, of
the slab is calculated from energy conservation:
A=1-7—7R.O0n the other hand, the possible eigenmodes
of the slab are obtained by requiring existence of a wave
field localized within the slab in the absence of incident
wave. Dividing the slab into a left and a right part,
described by reflection matrices Q!' and QY respectively,
this requirement leads to the secular equation [32,33]

det[I-Q[QR1=0, (10)

where I is the unit matrix.

For a 3D photonic crystal consisting of an infinite
periodic sequence of layers stacked along the z-direction,
the wave field in the host region between the n-th and the
(n+1)-th unit slab has the form E(r) = Ygp(E gy, expliKy -
(r— Ap]+Eg,, exp[iK; -(r —Ap)lep, where A, is an
appropriate origin between the n-th and the (n+1)-th
slab. The coefficients Eg,,, are obviously related to Eg,, , ;
through the Q matrices of the unit slab. In matrix form we
have

E;+1 :QIE: +QI[E1:+]

E, =Q"E; +Q"E, . (11)
On the other hand, Bloch’s theorem implies that
Egil',;n 1 :exp(il(-a3)Eg§m, where a; is a vector which
connects a point in the n-th slab to an equivalent point
in the (n+1)-th slab and k= (k;, k;(w,Kk)). For given o
and k; one can obtain k, from the following eigenvalue
equation:

Ql I E;r
-Q"17'Q"Q" "1 'm-Q"Q"1/ \ Eiyy
E+
:exp(ik-ag)(E" > (12)

n+1

which follows directly from Eq. (11) and Bloch’s theorem.
Alternatively, one can formulate an eigenvalue equation
for the transfer matrix

Ql _ Qll [QIV] -1 Ql[l Qll [QIV] -1 En+
_ [QIV] - lQ[Il [QIV] -1 En—
E+
:exp(ik~ag)<En > (13)

n

The solutions k,(w, k) resulting from Eq. (12), or equiva-
lently Eq. (13), looked upon as functions of real o, define
for each k; lines in the complex k, plane, which all
together constitute the complex band structure of the
infinite crystal associated with the given crystallographic
plane. A line of given k; may be real (in the sense that k; is
real) over certain frequency regions, and be complex (in
the sense that k, is complex) for » outside these regions. It
turns out that for given k;, and o, out of the solutions
kz(w, k), none or, at best, a few are real and the corre-
sponding eigenvectors represent propagating modes of the
EM field in the given infinite crystal. The remaining
solutions k;(w,k;) are complex and the corresponding
eigenvectors represent evanescent waves. These have an
amplitude which increases exponentially in the positive or
negative z-direction and, unlike the propagating waves, do
not exist as physical entities in the infinite crystal. How-
ever, they are an essential part of the physical solutions of
the EM field in the case of a surface or a slab of finite
thickness. A region of frequency where propagating waves
do not exist, for given k;, constitutes a frequency gap of
the EM field for the given k; . If over a frequency region no
propagating wave exists whatever the value of k;, then
this region constitutes an absolute frequency gap.

The transfer matrix on the left-hand side of Eq. (13) can
also provide the reflection matrix, R.., of the correspond-
ing semi-infinite crystal. Moreover, through R., one can
find the surface states of the crystal, if such exist. In order
to obtain R, the eigenvectors of the transfer matrix need
to be arranged in a matrix F which projects the space of
forward and backward Bloch eigenmodes, V™ and V—,
onto the original plane-wave basis, as follows [7,34]:

Ear F+t+ F+- v+
()=l 7)) .

By definition, each eigenmode propagates through the
crystal without changing its state and, on the other hand,
for a semi-infinite crystal, there is no rear surface to reflect
the forward into backward Bloch waves. Therefore, the
appropriate boundary condition for the scattering problem
of an EM wave incident on a semi-infinite photonic crystal
from the homogeneous host material that extends to
infinity is V- =0 [34]. Then Eq. (14) yields

E, =F "[F" "7 'Ef =R.E; . (15)

On the other hand, the condition for the occurrence of
surface states translates to the existence of non-zero
forward Bloch modes (V' # 0) in the absence of incoming
field (Ef =0) [10,35]. Then Eq. (14) gives F**V™' =
E; =0, which is satisfied when

det[F* *]1=0. (16)

3. Nonreciprocal planar magnetoplasmonic
nanostructures

Plasmonic nanostructures can exhibit a substantial
magneto-optical activity due to the excitation of localized
surface plasmon resonance modes [36]. Compared to a
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homogeneous plasma surface, discontinuous surfaces con-
sisting of plasma nanoparticles provide a more flexible
platform for tailoring plasmons by varying the shape and
geometrical arrangement of the particles as well as their
dielectric environment. As an example we consider an fcc
crystal of plasma nanospheres, characterized by a relative
magnetic permeability 4, =1 and by the Drude relative
electric permittivity [37]

T S 17
= T ?[1+i1/(cw)]’ an
where 7 is the relaxation time of the free carriers and wp, is
the bulk plasma frequency: w3 =ne?/(meo), with n, —e and
m being the carrier density, charge and mass, respectively.
In what follows, we use w, as the frequency unit, which
naturally introduces c/wp as the length unit. For the crystal
under consideration we take the sphere radius S=c/w,
and the nearest neighbor distance in the fcc lattice
ag = 2.2c/wp. We note that, assuming #w, ~ 10 eV, which
is a typical value for metals, c/w) corresponds to about 20
nm. For semiconductors, on the other hand, whose carrier
densities can be easily varied within a broad range of
values, but are always much lower than those in metals,
the plasma frequency is much smaller (typically at mid-
and far-infrared frequencies) and the length unit c/w,
increases accordingly.

In the presence of a static uniform magnetic field, B, the
response of a plasma to a time-harmonic EM wave of
angular frequency » and electric-field component E = Eg
exp(—iwt), is described by the equation of motion of the
electrons: mi = —mz~ 't —eE—er x B. The resulting polar-
ization density, P = —ner, defines an electric displacement
vector, D =¢yE+P, and finally yields the relative electric
permittivity tensor & of the magnetized plasma through
D=¢oegE. If we take B to be oriented along the
z-direction, after some straightforward algebra we find
that &¢ has the gyrotropic form of Eq. (1) with &, =1— a)f,af /
(0*E —w?), £, = ep, and g, = —wcwg/[w(a)252 —?)]. In these
expressions, w.=eB/m is the cyclotron resonance fre-
quency and ¢ =1+1i/(zw). We note that, by setting «. =0,
¢ becomes a diagonal tensor with all of its diagonal
elements equal to ¢,, as expected. In our calculations we
shall neglect dissipative losses (z~! = 0) for simplicity.

It has been recently shown that the fcc crystal of
plasma nanospheres under consideration, in the absence
of external magnetic field, supports surface, so-called
Tamm, states at its (001) surface [10], which satisfy the
reciprocity condition o(—Kkj)=w(k;). We now apply a
static uniform magnetic field parallel to the surface, along
the y-direction, corresponding to w; = 0.01wy. This value of
¢, though it is by an order of magnitude smaller than that
considered by Yu et al. [38], corresponds to a prohibitively
strong magnetic field, of the order of 10> T in the case of
metals. For semiconductors however, the field becomes
much weaker, of the order of 1 T or less. It is worth noting
that if the spheres are magnetized in the z-direction the T
matrix has a block diagonal form: Ty = Ty Sm-
Moreover, T},’Z;,,l, vanishes identically if the magnetic/elec-
tric multipoles corresponding to Pl and P'I' do not have
the same parity, even or odd, which means that the T
matrix in a given m subspace is further reduced into two

submatrices [12-14]|. The above symmetry properties,
however, do not hold in any coordinate system. In general,
if a,p,y are the Euler angles transforming an arbitrarily
chosen coordinate system into the coordinate system in
which the magnetization is oriented along the z-axis, the T
matrix is given by

Tpimprm = XDy (@ B Ty DL (=7, =B, — a0, (18)
m

where D are the appropriate transformation matrices
associated with the [ irreducible representation of the O(3)
group [39]. Since in our case the static magnetic field is not
oriented along the z-direction, which is by definition the
direction of growth of the crystal in the LMS method, but
along the y-direction, we need to transform the T matrix
according to Eq. (18) using the appropriate Euler angles:
a=90°, p=90", y =0°.

In Fig. 4 we display the dispersion diagram, along the
ky-direction, of the optical Tamm states of the given crystal
of plasma spheres, magnetized in the y-direction. The
shaded regions in Fig. 4 represent frequency bands, i.e.,
at any frequency within a shaded region, for given
Kk, = (ky, 0), there exists at least one propagating EM mode
in the infinite crystal. The blank regions represent fre-
quency gaps and the dotted straight line denotes the light
cone in the air host. With solid lines we show the
dispersion of surface states, calculated according to Eq.
(16), which lie, indeed, in gap regions and outside the light
cone, i.e., they are true surface states since they decay
exponentially in the crystal as well as in the outer region.
As can be seen from the enlarged view of the dispersion
curves in Fig. 4, the propagation of the surface states along
the direction normal to the magnetic field changes and
becomes nonreciprocal: w(—ky)# w(ky). Reversal of the
magnetic field direction has the same effect as reversal
of the propagation direction (ky— —ky) while, if the
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Fig. 4. Left-hand panel: Projection on the k-direction of the photonic
band structure of an fcc crystal of Drude spheres (nearest neighbor
distance: ag =2.2c/wp; sphere radius: S=c/wp), grown along its [001]
direction, under the action of a static uniform magnetic field correspond-
ing to w:=0.01w, applied along the y-axis. Shaded and blank regions
represent frequency bands and gaps, respectively. With solid lines in gap
regions we show the dispersion curves of the surface states. The dotted
line denotes the light cone in the host medium (air). Right-hand panel: An
enlarged view of dispersion curves, with the (+) and (—) signs denoting
positive and negative values of ki, respectively, and a schematic repre-
sentation of the crystal and its surface states.
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magnetic field is perpendicular to the surface or parallel to
the propagation direction, nonreciprocity is not encoun-
tered. This can be explained as follows. The structure
under consideration is invariant under the C4, point
symmetry group [39]. If an external magnetic field is
applied along the z-direction, i.e., perpendicular to the
surface, the point group is reduced to C, since PegP~" = &4
only for those operations P of C4, that belong to C4, and
spectral reciprocity o(—K;) = w(k)) is always ensured by a
rotation through an angle » about the z-axis, which is a
symmetry operation of C,. If now the magnetic field is
in-plane, say along the y-direction, the relevant point
symmetry group, Cq,, consists of two operations: Identity
and reflection with respect to the x—z plane [39]. There-
fore, while reciprocity along the y-direction, w(—ky)=
w(ky), is ensured by mirror symmetry with respect to the
x—z plane, w(—ky)+# w(ky) because there is no group
symmetry operation which transforms (ky,0,0) into
(—ky,0,0), given also the lack of time-reversal symmetry.
Consequently, nonreciprocity occurs for an in-plane exter-
nal magnetic field in the Voigt (Cotton-Mouton) geometry,
i.e.,, when light propagates perpendicular to the magnetic
field. As a result of the spectral splitting of the dispersion
curves associated with the forward and backward propa-
gating waves, within a short frequency range near their
band edges, only modes propagating in one direction exist.
The relative spectral shift of the bands depends on the
magnitude of the external field, which allows for the
design of tunable surface states for one-way light trans-
port. A similar nonreciprocal behavior has been reported
for surface modes at truncated one-dimensional magne-
tophotonic crystals [40].

An alternative design, which enables to overcome the
major drawback of the previous nonreciprocal structure,
namely, the need for a strong external magnetic field, may
consist of a layer of magnetic garnet particles on top of the
surface of a homogeneous plasmonic material. In this case,
nonreciprocity is introduced by the magneto-optic proper-
ties of the garnet material [41] that can be magnetically
saturated by relatively weak magnetic fields. It should be
noted that, even though the same effect can be obtained
using a uniform gyrotropic overlayer, particle arrays offer
additional flexibility for optimization of the design by
properly adjusting the different geometric parameters
involved, such as particle size and shape, and interparticle
distance. We consider a 2D array of garnet spheres on top
of the surface of a homogeneous plasmonic material,
described by the Drude relative electric permittivity of
Eq. (17) neglecting dissipative losses. The spheres have a
radius S=c/w, and are arranged on a square lattice of
lattice constant ap =2.2c/wp. The optical response of the
spheres, if they are magnetized along the z-direction, is
described by a relative electric permittivity tensor of the
form of Eq. (1) with & =¢,=6.25 and ¢ =0.06, values
which are appropriate for magnetic garnet materials
[42-44]. In Fig. 5 we depict the dispersion diagram of
the surface plasmon polariton modes in this structure,
calculated according to Eq. (10) along the k,-direction if
the garnet spheres are magnetized in the y-direction.
Because of the 2D periodicity of the coating layer, the
dispersion curves are folded into the SBZ and Bragg gaps
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Fig. 5. Left-hand panel: Dispersion diagram in the k,-direction of the
plasmon modes at the surface of a homogeneous Drude material coated
with a square array of garnet spheres (lattice constant: ag = 2.2¢/wy,
sphere radius S=c/wp) magnetized in the y-direction. The dotted line
denotes the light cone in air. Right-hand panel: An enlarged view of the
dispersion diagram, with the (+) and (—) signs denoting positive and
negative values of k,, respectively, and a schematic representation of the
structure and the surface plasmon polariton modes.

open up at the Brillouin zone boundaries. Again, as can be
seen from an enlarged view of the dispersion diagram, the
propagation of the surface plasmon polariton modes along
the direction normal to the magnetic field becomes non-
reciprocal: w(—ky) # w(ky).

4. Conclusion

In summary, we presented an extended version of the
full-electrodynamic LMS method for photonic structures of
particles of various kinds, emphasizing on gyrotropic
spheres with arbitrarily oriented gyration vector. The
applicability and efficiency of the method is demonstrated
by two illustrative examples of surface geometries without
inversion center, namely a semi-infinite fcc crystal of
magnetized plasma nanospheres and a homogeneous
plasma substrate covered by a square array of magnetic
garnet nanospheres. Spectral nonreciprocity of photonic
Tamm and surface plasmon polariton states, which
emerges as a result of the simultaneous lack of space-
inversion and time-reversal symmetries, is demonstrated
in the Voigt configuration.
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