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Composite magnetoplasmonic nanoparticles with a core-shell morphology exhibit intriguing optical properties
and offer impressive opportunities for tailoring in a controllable manner the light-matter interaction at subwave-
length dimensions. These properties are usually analyzed in the framework of the quasi-static approximation,
which, however, is often inadequate; thus, a full electrodynamic treatment is required. In this respect, we devel-
oped a rigorous method for an accurate description of electromagnetic scattering by a gyrotropic sphere coated
with a nongyrotropic concentric spherical shell, based on the full multipole expansion of the wave field. The
method was applied to specific examples of core-shell cobalt-silver spherical nanoparticles, where the occurrence
of strong circular dichroism induced by magnetoplasmonic interaction, which largely exceeds that of homo-
geneous noble metal nanoparticles in an external magnetic field, was found. Our results were also explained
by reference to the quasi-static approximation, which, though it reproduces the main features of the absorption
spectra, strongly overestimates circular dichroism in the cases we studied. © 2015 Optical Society of America

OCIS codes: (050.1930) Dichroism; (160.3820) Magneto-optical materials; (160.4236) Nanomaterials; (250.5403) Plasmonics;

(290.4020) Mie theory.
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1. INTRODUCTION

Particle plasmons refer to localized modes of the electromag-
netic (EM) field, e.g., in a noble metal nanoparticle, which
are able to confine light in subwavelength volumes and achieve
huge local field enhancement at specific frequencies that can be
tuned within a relatively broad spectrum by changing the par-
ticle species, size, shape, and/or its environment [1]. All of these
properties render particle plasmons suitable for enhancing the
light-matter interaction and developing nanophotonic devices,
sensing, light-harvesting applications, etc.

Controlling particle plasmons with a magnetic field provides
further opportunities for designing active plasmonic compo-
nents. In this context, it has been shown that 3D chiral struc-
tures and surfaces of crystals of plasma spheres in an external
static uniform magnetic field that lack, simultaneously, time-
reversal and space-inversion symmetries exhibit a nonreciprocal
spectral response [2,3], which is a key issue in the development
of nonreciprocal photonic devices. Moreover, it has been re-
ported that magnetoplasmonic modes observed on colloidal
gold nanoparticles by means of magnetic circular dichroism
spectroscopy could be useful for detecting changes in the refrac-
tive index of the surrounding medium and, thus, developing
refractometric sensing applications [4]. However, though noble

metals, like gold and silver, are excellent plasmonic materials,
they show very weak magneto-optical activity at moderate mag-
netic fields. On the other hand, ferromagnetic metals that
exhibit strong magneto-optical effects lack competitive plas-
monic properties due to high optical losses. In this respect,
combining ferromagnets with noble metals opens new routes
in the development of efficient and versatile magnetoplasmonic
architectures [5]. For example, strong enhancement of the mag-
neto-optical Faraday rotation has been observed in all-metal
core-shell cobalt-silver nanoparticles due to localized surface
plasmon resonance [6].

For a rigorous theoretical description of the optical re-
sponse of composite core-shell magnetoplasmonic particles,
beyond the quasi-static approximation, a full electrodynamic
method is clearly needed. In the present paper, we develop
such a method following the Mie approach to the scattering
problem, which is based on the multipole expansion of the
EM field in the gyrotropic core, isotropic shell, and host re-
gions and, subsequently, proper matching of the wave field at
the interfaces. The applicability of the method is demon-
strated in specific examples of core-shell cobalt-silver nano-
spheres, where evidence for the occurrence of strong
circular dichroism is provided.
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2. THEORETICAL METHOD

Material gyrotropy at optical and infrared frequencies is usually
described by a relative permittivity tensor,

ϵg
↔ � ϵz

0
@ ϵr −iϵκ 0

iϵκ ϵr 0
0 0 1

1
A; (1)

if we take the gyration vector along the z axis and a scalar rel-
ative permeability μg . Starting from Maxwell equations for the
spatial part of a monochromatic EM field of angular frequency
ω with exp�−iωt� time dependence inside such a sourceless
medium: ∇ · B�r� � 0, ∇ · D�r� � 0, ∇ × E�r� � iωB�r�,
and ∇ ×H�r� � −iωD�r� and the constitutive relations
B�r� � μ0μgH�r� and D�r� � ϵ0ϵg

↔
E�r�, we obtain the wave

equation

∇ × ∇ × �ϵzϵg
↔−1D�r�� − q2gD�r� � 0; (2)

with q2g � ω2ϵzμgϵ0μ0 � ϵzμgω
2∕c2.

Following the approach of Lin and Chui [7], we solve
Eq. (2) by expanding the wave field into the specific vector-
spherical-wave basis employed in our layer-multiple-scattering
method [8,9]. For this purpose, we define a set of longitudinal
(irrotational) spherical wave functions corresponding to a wave-
number q as

FLlm�q; r� �
1

q
∇�f l �qr�Y lm�r̂��;

l � 0; 1; 2;…;m � −l ; −l � 1;…; l ;
(3)

where Y lm are the usual spherical harmonics and f l may be any
linear combination of the spherical Bessel function, jl , and the
spherical Hankel function, h�l . Similarly, we consider a set of
transverse (divergenceless) spherical wave functions given by

FHlm�q; r� � f l �qr�Xlm�r̂�;

FElm�q; r� �
i
q
∇ × �f l �qr�Xlm�r̂��;

l � 1; 2;…;m � −l ; −l � 1;…; l ; (4)

where Xlm are the vector spherical harmonics. The above vector
spherical wave functions constitute a complete basis set for the
expansion of any vector field in the sense of Helmholtz theo-
rem [10].

The divergenceless property, ∇ · D�r� � 0, implies that D
can be expanded in terms of FHlm and FElm, and it does not
involve FLlm, as follows:

D�r� �
X
j
bj
q2j
q2g

ϵ0ϵz
X
lm

�aHlm;jFHlm�qj; r�

� aElm;jFElm�qj; r��; (5)

where bj are expansion coefficients that can be determined from
the appropriate boundary conditions, while the wavenumbers
qj and the associated spherical-wave amplitudes aPlm;j, with

P � H; E , are obtained from the solution of the following
eigenvalue equation [11]:

X
P 0�H;E

X
l 0m 0

APlm;P 0l 0m 0aP 0l 0m 0;j �
q2g
q2j

aPlm;j; (6)

where the subscript j � 1; 2;… enumerates the eigenvalues
and eigenvectors of the matrix A. Explicit expressions for the
matrix elements of A are provided in the appendix. With D
given by Eq. (5), it follows from the equation iωμ0μgH�r� �
∇ × E�r� and from the constitutive relations that the corre-
sponding electric and magnetic field components have the form

E�r� �
X
j

bj
X
lm

"
q2j
q2g

wlm;jFLlm�qj; r� � aHlm;jFHlm�qj; r�

� aElm;jFElm�qj; r�
#
;

H�r� �
X
j
bj

qj
ωμ0μg

X
lm

�aElm;jFHlm�qj; r�

− aHlm;jFElm�qj; r��; (7)

where explicit expressions for wlm;j are given in the appendix.
We now assume a homogeneous gyrotropic sphere coated

with a concentric spherical shell of homogeneous and isotropic
material characterized by scalar EM parameters ϵs and μs. The
coated sphere, with outer radius S and inner radius Sc , is
centered at the origin of coordinates in a homogeneous and
isotropic host medium characterized by ϵh and μh and is illu-
minated by a plane EM wave of angular frequency ω. We write
the EM field inside the gyrotropic spherical core according to
Eqs. (3), (4), and (7) as

Ec�r� �
X
j

bj
X
lm

"
q2j
q2g

wlm;j
1

qj
∇�jl �qjr�Y lm�r̂��

� aHlm;jjl �qjr�Xlm�r̂�

� aElm;j
i
qj
∇ × jl �qjr�Xlm�r̂�

#

Hc�r� �
X
j
bj

qj
ωμ0μg

X
lm

�
aElm;jjl �qjr�Xlm�r̂�

− aHlm;j
i
qj
∇ × jl �qjr�Xlm�r̂�

�
; (8)

because the field must be finite everywhere, thus, only regular
vector spherical waves that involve jl enter in the expansion of
Eq. (8). In the shell region, we express the EM field at the given
frequency as a linear combination of the regular and irregular
transverse vector spherical waves:
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Es�r� �
X
lm

�
a0sH lmjl �qsr�Xlm�r̂� �

i
qs
a0sElm∇ × jl �qsr�Xlm�r̂�

� a�s
Hlmh

�
l �qsr�Xlm�r̂� �

i
qs
a�s
Elm∇ × h�l �qsr�Xlm�r̂�

�

Hs�r� �
ffiffiffiffiffiffiffiffiffi
ϵsϵ0
μsμ0

r X
lm

�
a0sElmjl �qsr�Xlm�r̂�

−
i
qs
a0sH lm∇ × jl �qsr�Xlm�r̂� � a�s

Elmh
�
l �qsr�Xlm�r̂�

−
i
qs
a�s
H lm∇ × h�l �qsr�Xlm�r̂�

�
; (9)

where qs � ω
ffiffiffiffiffiffiffiffi
ϵsμs

p ∕c is the corresponding wavenumber and
the coefficients a0sPlm and a�s

Plm refer to the regular and irregular
spherical waves, respectively. A similar expansion holds in the
host region with an index h instead of s to denote the relevant
quantities.

Applying the boundary conditions of continuity of the tan-
gential components of the EM field at the core-shell interface,
we can relate the coefficients of the irregular spherical waves in
the shell region, a�s

Plm, to those of the corresponding regular
waves in the same region, a0sPlm, through the scattering T matrix
of the spherical core embedded in the shell medium that, we
assume, extends to infinity, which we denote here by T c . In
matrix form, we have

a�s � Tca0s ; (10)

where

Tc � �Λ − Λ 0�−1�V − U��U� ΛZ�−1; (11)

with

ΛPlm;P 0 l 0m 0 � −
h�l �qsSc�
jl �qsSc�

δPP 0δl l 0δmm 0 ;

Λ 0
Plm;P 0 l 0m 0 � −

�xh�l �x�� 0qsSc
�xjl �x�� 0qsSc

δPP 0δl l 0δmm 0

UHlm;j �
jl �qjSc�
jl �qsSc�

aHlm;j ;

U Elm;j �
μsqjjl �qjSc�
μg qsjl �qsSc�

aElm;j

V Hlm;j �
μs �xjl �x�� 0qjSc
μg �xjl �x�� 0qsSc

aHlm;j ;

V Elm;j �
qs�xjl �x�� 0qjSc
qj�xjl �x�� 0qsSc

aElm;j

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l�l � 1�

p
qjqsjl �qjSc�

q2g �xjl �x�� 0qsSc
wlm;j: (12)

The boundary conditions for the EM field at the shell-host
interface lead to a system of linear equations, which can be writ-
ten in matrix form as follows:

A0ha0h � A�ha�h � A0sa0s � A�sa�s

B0ha0h � B�ha�h � B0sa0s � B�sa�s ; (13)

where A0h,A�h,A0s,A�s, B0h, B�h, B0s, and B�s are diagonal
matrices with the following elements:

A0h
Hlm;Hlm � jl �qhS�; A0h

Elm;Elm �
ffiffiffiffiffiffiffiffi
ϵhμs
ϵsμh

r
jl �qhS�;

A0s
H lm;Hlm � A0s

Elm;Elm � jl �qsS�;

A�h
Hlm;Hlm � h�l �qhS�; A�h

Elm;Elm �
ffiffiffiffiffiffiffiffi
ϵhμs
ϵsμh

r
h�l �qhS�;

A�s
H lm;Hlm � A�s

Elm;Elm � h�l �qsS�;

B0h
Hlm;Hlm � μs

μh
�xjl �x�� 0qhS ; B0h

Elm;Elm �
ffiffiffiffiffiffiffiffiffi
ϵsμs
ϵhμh

r
�xjl �x�� 0qhS ;

B0s
H lm;Hlm � B0s

Elm;Elm � �xjl �x�� 0qsS ;

B�h
Hlm;Hlm � μs

μh
�xh�l �x�� 0qhS ; B�h

Elm;Elm �
ffiffiffiffiffiffiffiffiffi
ϵsμs
ϵhμh

r
�xh�l �x�� 0qhS ;

B�s
H lm;Hlm � B�s

Elm;Elm � �xh�l �x�� 0qsS : (14)

Equations (10) and (13) can be solved to give

a�h � Ta0h; (15)

where

T � ��B0s � B�sTc�−1B�h − �A0s � A�sTc�−1A�h�−1

× ��A0s � A�sTc�−1A0h − �B0s � B�sTc�−1B0h�: (16)

Equation (16) gives the scattering T matrix of the core-shell
sphere under consideration. This matrix, like Tc , has a block
diagonal form: T Plm;P 0 l 0m 0 � T �m�

Pl ;P 0 l 0δmm 0 [11]. Moreover,
T �m�

Pl ;P 0 l 0 vanishes identically if the magnetic (H )/electric (E )
multipoles corresponding to Pl and P 0l 0 do not have the same
parity, even or odd, which means that the T matrix in a givenm
subspace is further reduced into two submatrices. These sym-
metry properties, however, do not hold in any coordinate sys-
tem. If α, β, γ are the Euler angles transforming an arbitrarily
chosen coordinate system into the given coordinate system in
which the relative permittivity tensor of the gyrotropic core has
the form of Eq. (1), the T matrix is given by

T Plm;P 0 l 0m 0 �
X
m 0 0

D�l�
mm 0 0 �α; β; γ�T �m 0 0�

Pl ;P 0 l 0D
�l 0�
m 0 0m 0 �−γ; −β; −α�;

(17)

where D�l� are the appropriate transformation matrices associ-
ated with the l irreducible representation of the O(3)
group [12,13].

The dimensionless scattering and extinction cross sections of
the sphere under consideration, normalized to the geometric
cross section, when the sphere is illuminated by a plane EM
wave of wave vector qh and polarization defined by the unit
vector ê, are given by [14]

σsc �
1

π�qhS�2
X
Plm

����X
P 0 l 0m 0

T Plm;P 0 l 0m 0A0
P 0 l 0m 0 �q̂h� · ê

����2 (18)

and

σext � −
1

π�qhS�2
Re

X
Plm

�A0
Plm�q̂h� · ê��

×
X
P 0 l 0m 0

TPlm;P 0 l 0m 0A0
P 0l 0m 0 �q̂h� · ê; (19)
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respectively, with

A0
Hlm�q̂h� �

4πil �−1�m�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l�l � 1�

p f�αml cos θeiϕY l−m−1�q̂h�

� m sin θY l−m�q̂h�
� α−ml cos θe−iϕY l−m�1�q̂h��ê1
� i�αml eiϕY l−m−1�q̂h�
− α−ml e−iϕY l−m�1�q̂h��ê2g (20)

and

A0
Elm�q̂h� �

4πil �−1�m�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l�l � 1�

p fi�αml eiϕY l−m−1�q̂h�

− α−ml e−iϕY l−m�1�q̂h��ê1
− �αml cos θeiϕY l−m−1�q̂h�
� m sin θY l−m�q̂h�
� α−ml cos θe−iϕY l−m�1�q̂h��ê2g; (21)

where αml � 1
2 ��l − m��l � m� 1��1∕2; θ and ϕ denote the an-

gular variables of qh in the chosen system of spherical coordi-
nates; and ê1 and ê2 are the polar and azimuthal unit vectors,
respectively, which are perpendicular to qh. We note that, if
ê � ê1 or ê � ê2, the wave is p or s linear polarized, respec-
tively, and if ê � �ê1 � iê2�∕

ffiffiffi
2

p
or ê � �ê1 − iê2�∕

ffiffiffi
2

p
it is

left-circular polarized (LCP) or right-circular polarized
(RCP), respectively. The absorption cross section is defined by

σabs � σext − σsc : (22)

It is clear from Eqs. (18), (19), and (22) that, in general, the
cross sections depend on the polarization and the direction of
propagation of the incident plane wave. In the particular case of
a spherically symmetric particle, e.g., if in our case the core is
also made of a nongyrotropic (isotropic) material, the T matrix
becomes diagonal: TPlm;P 0 l 0m 0 � T PlδPP 0δl l 0δmm 0 , and the
cross sections solely depend on the T matrix, sinceP

mjA0
Plm · êj2 � 2π�2l � 1�.

3. RESULTS AND DISCUSSION

We first apply our full electrodynamic multipole method,
which we developed in the previous section, on the specific case
of hybrid magnetoplasmonic nanoparticles consisting of a
spherical cobalt core coated with a concentric spherical silver
shell. Such nanoparticles can be synthesized in the laboratory
and are being extensively studied experimentally [6,15–18] and
theoretically [19–28], since they exhibit interesting electronic,
magnetic, optical, chemical, and biological properties. In our
calculations, we use the actual optical and magneto-optical con-
stants of the constituent materials, ϵz , ϵr , ϵκ, ϵs, in the spectral
region that interests us here, deduced from the experiment
[29–31], while μg � 1 and μs � 1. Moreover, we truncate
the spherical-wave expansions of the EM field at lmax � 4;
thus, we obtain 48 �� 2lmax�lmax � 2�� values of qj and asso-
ciated eigenvectors aPlm;j from the solution of Eq. (6). This cut-
off value of lmax is sufficient to achieve convergence of the
calculated absorption cross sections to a relative accuracy better
than 10−6 in all cases we examined.

Magnetic circular dichroism spectroscopy measures the dif-
ference between two absorption spectra acquired using light
with opposite helicity in the presence of a magnetic field par-
allel to the incident light direction [4]. Since the wavelength of
light is much longer than the size of the nanoparticles under
consideration, their optical response can be described by a di-
pole polarizability tensor [32,33]:

α
↔ � 4πϵ0S3�ϵ

↔
− ϵh I

↔
��ϵ↔ � 2ϵh I

↔
�−1; (23)

where I
↔
is the diagonal unit tensor and ϵ

↔
an effective particle

permittivity tensor, which, in the spirit of the quasi-static
Maxwell–Garnett homogenization method, is obtained by
the following equation [34,35]:

�ϵ↔ − ϵs I
↔
��ϵ↔ � 2ϵs I

↔
�−1 �

�
Sc
S

�
3

�ϵg
↔
− ϵs I

↔
��ϵg

↔ � 2ϵs I
↔
�−1:

(24)

The permittivity tensor, ϵg
↔
, given by Eq. (1), can be readily

diagonalized, and its first two diagonal elements, ϵ���
g �

ϵz�ϵr � ϵκ� and ϵ�−�g � ϵz�ϵr − ϵκ�, correspond to LCP and
RCP waves, respectively, propagating along the z direction,
which is taken to be along the direction of the magnetization,
while the third diagonal element is ϵz . Therefore, in the quasi-
static approximation, the corresponding diagonal elements of
α
↔
, α��� and α�−�, provide the (normalized) absorption cross sec-

tion of the core-shell particles under consideration for LCP and
RCP light incident along the z direction according to scattering
theory [36]:

σ�	�
abs � qh

πϵ0S2
Im α�	�: (25)

In the absence of gyrotropy, i.e., for an unmagnetized
core, ϵ���

g � ϵ�−�g and the two circular plasmonic modes are
degenerate. Within the quasi-static approach, ϵ��� � ϵ�−� ≡ ϵ
and, in the vicinity of the resonance frequency ω0 given by
the Fröhlich condition: Re ϵ�ω0� � 2ϵh � 0, in the low-
loss regime Im ϵ�ω� ≪ 1, we obtain to first-order
σabs ≅ A∕��ω − ω0�2 � Γ�, where A and Γ are positive con-
stants. In the presence of weak gyrotropy, ϵ�	� ≅ ϵ	 δϵ where
δϵ is a small quantity, and the degeneracy of the two circular
plasmonic modes is removed. To first-order approximation,
σ�	�
abs have the same Lorentzian-like spectral shape, as in the ab-

sence of gyrotropy, about ω0 shifted downward/upward by the
same small amount δω ≅ Re δϵ�ω0�∕ d

dωRe ϵ�ω�jω0
, i.e.,

ω0 	 δω, which results in a bipolar line shape for
Δσabs ≡ σ���

abs − σ�−�abs, as we shall see below.
Noble metals are characterized by their relatively low losses;

therefore, noble metal nanoparticles support very well defined
plasmonic resonances compared with ferromagnetic metals,
which exhibit large losses and very broad particle plasmon res-
onances in the visible range. This is clearly shown in Figs. 1(a)
and 1(b), which display the absorption cross sections of a silver
and an unmagnetized cobalt sphere, respectively, both of radius
20 nm. It can be seen that, though the absorption spectrum of
the silver nanoparticle is characterized by a strong dipole plas-
monic resonance at 3.65 eV, no such resonance appears in the
corresponding spectrum of the cobalt particle due to the high
absorptive losses. The characteristic silver plasmon resonance
also subsists in a bimetallic particle of the same size, consisting
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of a cobalt spherical core and a concentric spherical silver shell,
as shown in Fig. 1(c). The above results agree semi-quantita-
tively with those of the quasi-static approximation, as can be
seen in Fig. 1.

As shown in Fig. 2, with increasing the size of the cobalt core,
the particle plasmon resonance shifts to higher frequencies and
progressively becomes broader and less pronounced. The inten-
sity of the associated EM field in and about the particle is overall
reduced, and the field penetrates much less in the core region

because of the more negative real part of the permittivity of co-
balt compared with that of silver at these frequencies [29,30].

We now assume that the nanoparticles under consideration
are magnetized along the incident light direction, which is
taken to be the z direction. We note that these particles exhibit
a ferromagnetic behavior [6]. As a quantitative measure of cir-
cular dichroism, we adopt Δσabs, the difference between the
normalized absorption cross sections for LCP and RCP inci-
dent light [37]. As previously explained, this quantity has a bi-
polar spectral shape that stems from the relative shift of the
corresponding particle plasmon resonances due to the mag-
neto-optic interaction. This spectral shape is indeed obtained,
though with a clear asymmetry, by both full electrodynamic
and quasi-static calculations, as shown in Fig. 3. The calculated
relative frequency shifts between the LCP and RCP magneto-
plasmonic resonances, normalized to the corresponding particle
plasmon resonance frequency in the absence of gyrotropy, are
of the order of 10−4 and vary increasingly by increasing the size
of the cobalt core. We note that, in order to achieve these values
with homogeneous noble metal nanoparticles, an external mag-
netic field as strong as 10 T is required [4]. It is also worth
noting that the quasi-static approximation yields a too strong
and slightly shifted in frequency circular dichroism signal.
Therefore, full electrodynamic calculations are necessary for
a quantitative description of the effect, even for small particles.

4. CONCLUSIONS

In summary, we extended the Mie scattering method for a
core-shell sphere to the case where the core is made of a gyro-
tropic material. This work generalizes and complements similar
recently developed methods dealing with some particular
cases of the inverse morphology: A perfectly conducting
sphere coated by a gyrotropic concentric spherical shell [38] or
the related problem of a metallic sphere coated by a concentric
spherical shell of nematic liquid crystal [39]. It is worth noting
that, since our method provides, in an efficient and straightfor-
wardmanner, the scatteringT matrix of the single particle, it can
be readily implemented into, e.g., the layer-multiple-scattering
computational methodology [8,9] in order to describe the

Fig. 2. (a) Calculated exact absorption cross-section spectra normal-
ized to the geometric cross section of a silver sphere of radius 20 nm.
(b) Unmagnetized cobalt sphere of radius 6 nm coated with a concen-
tric spherical silver shell, 14 nm thick. (c) Unmagnetized cobalt sphere
of radius 10 nm coated with a concentric spherical silver shell, 10 nm
thick. (d) Unmagnetized cobalt sphere of radius 14 nm coated with a
concentric spherical silver shell, 6 nm thick. In all cases, the host
material is air. The corresponding relative (with respect to the incident
plane wave) electric-field amplitude distribution in the plane of polari-
zation, at the plasmon resonance frequency in each case, is displayed in
the upper part of the figure.

(a)

(b)

(c)

Fig. 3. Circular dichroism of core-shell cobalt-silver spheres of the
same outer radius 20 nm in air. The cobalt spherical core has a radius
of (a) 6 nm, (b) 10nm, and (c) 14nmand ismagnetized along the propa-
gation direction of the incident light. Solid lines: full electrodynamic
multipole calculations. Dotted lines: quasi-static approximation.

(a)

(b)

(c)

Fig. 1. (a) Calculated exact absorption cross-section spectra (solid
lines) normalized to the geometric cross section of a silver sphere of
radius 20 nm. (b) Unmagnetized cobalt sphere of radius 20 nm.
(c) Unmagnetized cobalt sphere of radius 14 nm coated with a con-
centric spherical silver shell, 6 nm thick. Results of the quasi-static
approximation are shown by dotted lines. In all cases, the host medium
is air.
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optical properties of various structures of such hybrid gyro-
tropic-isotropic core-shell particles. Moreover, we applied our
method to the case of core-shell cobalt-silver nanoparticles
and demonstrated the occurrence of strong circular dichroism,
though not to the degree predicted by the quasi-static approxi-
mation, which accounts for the necessity of the full electrody-
namic treatment.

APPENDIX A

In this appendix, for the sake of completeness, we provide
explicit expressions for the matrix elements of A [see
Eq. (6)] and the wlm;j coefficients in Eqs. (7) and (8), which
have been derived elsewhere [11]. Defining ϵ 0r � ϵr∕�ϵ2r − ϵ2κ�,
ϵ 0κ � −ϵκ∕�ϵ2r − ϵ2κ�, and ϵ̄ 0r � ϵ 0r − 1, we have

AHl 0m 0;Hlm � �l2 � l − m2�ϵ 0r � mϵ 0κ � m2

l�l � 1� δl l 0δmm 0 ; (A1)

AEl 0m 0;Hlm �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�l − 1��l − m��l � m�
�l � 1��2l − 1��2l � 1�

s
mϵ̄ 0r − �l � 1�ϵ 0κ

l
δl−1;l 0δmm 0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�l � 2��l − m� 1��l � m� 1�

l�2l � 1��2l � 3�

s
mϵ̄ 0r � lϵ 0κ
l � 1

δl�1;l 0δmm 0 ;

(A2)

AHl 0m 0;Elm �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�l � 1��l − m��l � m�
�l − 1��2l − 1��2l � 1�

s
mϵ̄ 0r � �l − 1�ϵ 0κ

l
δl−1;l 0δmm 0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l�l − m� 1��l � m� 1�
�l � 2��2l � 1��2l � 3�

s
mϵ̄ 0r − �l � 2�ϵ 0κ

l � 1
δl�1;l 0δmm 0 ;

(A3)

AEl 0m 0;Elm � δl l 0δmm 0 � ��2l2 � 2l � 3�m2 � �2l2 � 2l − 3�l�l � 1��ϵ̄ 0r � �4l2 � 4l − 3�mϵ 0κ
l�l � 1��2l − 1��2l � 3� δl l 0δmm 0

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�l − 2��l � 1��l − m − 1��l − m��l � m − 1��l � m�

�l − 1�l�2l − 3��2l � 1�

s
ϵ̄ 0r

2l − 1
δl−2;l 0δmm 0

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l�l � 3��l − m� 1��l − m� 2��l � m� 1��l � m� 2�

�l � 1��l � 2��2l � 1��2l � 5�

s
ϵ̄ 0r

2l � 3
δl�2;l 0δmm 0 ; (A4)

while

wlm;j �
X∞
l 0�1

Xl 0
m 0�−l 0

�f̃ l 0m 0
lm aHl 0m 0;j � f̄ l 0m 0

lm aEl 0m 0;j�; (A5)

and

w00;j � −

ffiffiffi
2

3

r
ϵ 0κaH10;j −

ffiffiffiffiffi
2

15

r
ϵ̄ 0raE20;j; (A6)

where

f̃ lm
l 0m 0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�l − m��l � m�

l�l � 1��2l − 1��2l � 1�

s
�mϵ̄ 0r − �l � 1�ϵ 0κ�δl−1;l 0δmm 0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�l − m� 1��l � m� 1�
l�l � 1��2l � 1��2l � 3�

s
�mϵ̄ 0r � lϵ 0κ �δl�1;l 0δmm 0 (A7)

and

f̄ lm
l 0m 0 � �l 2 � l − 3m2�ϵ̄ 0r − �2l − 1��2l � 3�mϵ 0κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l�l � 1�
p

�2l − 1��2l � 3� δl l 0δmm 0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�l � 1��l − m − 1��l − m��l � m − 1��l � m�

l�2l − 3��2l � 1�

s
ϵ̄ 0r

2l − 1
δl−2;l 0δmm 0

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l�l − m� 1��l − m� 2��l � m� 1��l � m� 2�

�l � 1��2l � 1��2l � 5�

s
ϵ̄ 0r

2l � 3
δl�2;l 0δmm 0 : (A8)
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