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We report on the eigenmodes of photonic crystals consisting of submicron homogeneous chiral spheres
in a nonchiral isotropic medium, by means of full electrodynamic calculations using the layer-multiple-
scattering method. It is shown that resonant modes of the individual spheres give rise to narrow bands
that hybridize with the extended bands of the appropriate symmetry associated with light propagation in
an underlying effective chiral medium. The resulting photonic dispersion diagram exhibits remarkable
features, such as strong band bending away from the Bragg points with consequent negative-slope dis-
persion inside the first Brillouin zone and sizable frequency gaps specific to each polarization mode.
We present a rigorous group-theory analysis to explain features of the calculated photonic band struc-
ture, peculiar to a system which possesses time-reversal but not space-inversion symmetry, and discuss
some interesting aspects of the underlying physics.

� 2011 Elsevier B.V. All rights reserved.
Photonic crystals with chiral constituents have been investi-
gated in relation to the occurrence of frequency band gaps [1].
More recently, it has been suggested that material chirality offers
new opportunities to realize negative refraction and related effects
in effectively uniform media. In particular, it has been shown that
the existence of a chiral resonance, realized either in a mixture of
small helical inclusions [2] or in an assembly of resonant particles
in a nondispersive chiral medium [3], leads to negative refraction
and superlensing for one polarization, resulting in improved and
simplified designs of novel optical chiral metamaterials [4]. Fur-
thermore, in the strong chirality regime, intriguing properties, such
as chirality-dependent node switching, polarization-sensitive
transmission, and handedness-dependent mode localization, have
been reported on two-dimensional (2D) photonic structures con-
sisting of infinite cylinders made of a chiral (meta)material in a
dielectric background [5]. On the other hand, in photonic crystals
formed by optically active constituents, the combined effect of
space-inversion-symmetry breakdown and gyrotropy has the same
impact on the eigenmode structure as the spin–orbit coupling in
electronic band states, which allows one to draw certain parallels
between electron spin and photospin transport in these periodic
structures. Such an analysis was carried out on a 1D chiral/nonchi-
ral periodic multilayer structure [6].

In the present communication we report a rigorous group-
theory analysis to explain general features of the frequency band
structure of 3D photonic crystals consisting of chiral spheres in a
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nonchiral (dielectric) medium and explain the physical origin of
the different eigenmodes of the electromagnetic (EM) field in such
structures.

The optical response of a homogeneous chiral material is de-
scribed by the phenomenological Drude–Born–Fedorov constitu-
tive relations [7]

Dðr; tÞ ¼ �c�0½Eðr; tÞ þ bcr� Eðr; tÞ� ð1Þ
Bðr; tÞ ¼ lcl0½Hðr; tÞ þ bcr�Hðr; tÞ�; ð2Þ

where the dimensionless coefficients �c; lc correspond to the iso-
tropic relative permittivity and permeability, respectively, while
the chirality parameter bc (in units of length) is a real number in
the absence of dissipative losses. Homogeneous plane waves prop-
agating in this material have the form of circularly polarized waves
of either handedness with wave numbers qL ¼ qc=ð1� qcbcÞ and
qR ¼ qc=ð1þ qcbcÞ, for left- and right-circular polarization, LCP and
RCP, respectively, where qc ¼ x ffiffiffiffiffiffiffiffiffiffi

�clc
p

=c; c ¼ 1=
ffiffiffiffiffiffiffiffiffiffi

�0l0
p

being the
velocity of light in vacuum.

When light is incident on a homogeneous chiral sphere of ra-
dius S, embedded in a nonchiral host medium characterized by �
and l, a scattered field is generated. The expansion coefficients
of the scattered field are obtained from those of the incident wave
through the so-called scattering T matrix. We denote the matrix
elements of T in the spherical-wave basis by TPlm;P0 l0m0 , where P
stands for the polarization mode, electric ðEÞ or magnetic ðHÞ,
and l;m are the usual angular momentum indices. Because of the
spherical symmetry of the scatterer, T is diagonal in l and indepen-
dent on m; however, it is not diagonal in P in the given represen-
tation, which reflects the mixing of the E and H modes upon
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Fig. 1. The photonic band structure of the crystal under study, along its [001]
direction. The bands of LCP and RCP eigenmodes are shown by black and gray solid
lines, respectively. With dashed and dotted lines we denote inactive bands (see also
Fig. 2).

Fig. 2. A detail view of Fig. 1 over a limited frequency region about the lowest
resonances of the single sphere, shown in the margin. The bands along the [001]
direction have the symmetry of the C4 group: A (dashed line), B (dotted line), E1

(black solid line), E2 (gray solid line). The eigenmodes at the center of the Brillouin
zone are denoted by the corresponding irreducible representation of the appropri-
ate point group, O. The open circles show the eigenfrequencies of a (001) slab of the
given crystal, four-layers thick, plotted against discrete values of
kzd=p ¼ 1=5; 2=5; 3=5; 4=5 (see text).
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scattering because of chirality. Therefore TPlm;P0 l0m0 ¼ TPP0 ;l dll0dmm0 .
Closed-form expressions for TPP0 ;l have been derived by Bohren [7].

The condition to have a scattered field in the absence of incident
wave is satisfied at the poles of the T matrix and defines the eigen-
modes of the particle. A chiral sphere in a dielectric environment
does not support true bound states because the eigenvalues of
the corresponding T matrix have no poles on the real-frequency
axis. However, for each l ¼ 1;2; . . ., one of the two eigenvalues of
T has poles in the lower complex-frequency half-plane close to
the real axis, at xnl � icnl, as qcbc approaches unity. These poles cor-
respond to 2l-pole resonant modes of the EM field at xnl with in-
verse lifetime cnl.

We now consider an fcc crystal, with lattice constant a, of
spheres embedded in a dielectric medium with � ¼ 3 and l ¼ 1.
We view the crystal as a sequence of (001) crystallographic planes.
In each plane the spheres are arranged on a square lattice, of lattice
constant a0 ¼ a

ffiffiffi

2
p

=2, while consecutive planes are separated by a
distance d ¼ a=2. The spheres have a radius S ¼ 0:45a0 and are
made of a chiral material with �c ¼ 2; lc ¼ 1 and bc=a0 ¼ 0:2.
Assuming bc ¼ 3� 10�8 m [5], a0 ¼ 150 nm. It is interesting to
note that the given crystal lacks invariance under space inversion
because of its chiral constituents. Therefore, the appropriate point
symmetry group is O, which consists of only proper rotations, and
not Oh that would be if the spheres were optically inactive [8].

We calculate the photonic band structure of this crystal by the
layer-multiple-scattering method, which is well-established [9].
An advantage of the method in that it solves Maxwell equations
in frequency domain and, therefore, it can treat dispersive materi-
als, such as chiral substances, in a straightforward manner. The
properties of the individual scatterers enter through the corre-
sponding T matrix, and in-plane multiple scattering is evaluated
in the spherical-wave basis using proper propagator functions.
Subsequently, interlayer scattering is described in a plane-wave
basis through appropriate transmission and reflection matrices.
For a 3D crystal consisting of an infinite periodic sequence of
planes of scatterers, stacked along the z direction, applying the
Bloch condition for the wave field in the region between two con-
secutive unit layers leads to an eigenvalue equation, which gives
the z component of the Bloch wave vector, kz, for the given fre-
quency x and in-plane reduced wave vector component kk. It turns
out that, for given kk and x, out of the eigenvalues kzðx;kkÞ none
or, at best, a few are real and the corresponding eigenvectors rep-
resent propagating modes of the EM field. The remaining eigen-
values kzðx;kkÞ are complex and the corresponding eigenvectors
represent evanescent waves. These have an amplitude which in-
creases exponentially in the positive or negative z direction and,
unlike the propagating waves, do not exist as physical entities in
the infinite crystal. However, they are an essential part of the phys-
ical solutions in a slab of finite thickness. A region of frequency
where propagating waves do not exist, for given kk, constitutes a
frequency gap of the EM field for the given kk. In order to ensure
adequate convergence in our calculations, we truncate the spheri-
cal-wave expansions at lmax ¼ 6 and take into account 37 2D reci-
procal lattice vectors in the relevant plane-wave expansions [9].

In Fig. 1 we display the calculated photonic band structure of
the crystal under study along its [001] direction. The bands along
this direction can be classified according to the irreducible repre-
sentations ðA;B; E1; E2Þ of the C4 group, which is a subgroup of O
[8]. All these bands are nondegenerate since the irreducible repre-
sentations of C4 are one dimensional. The E1 and E2 bands have the
symmetry of LCP and RCP propagating waves, respectively, and
thus can be excited by a wave of the appropriate polarization, inci-
dent normally on a finite (001) slab of the crystal. The A and B
bands cannot be excited by an externally incident wave because
they do not have the proper symmetry. These bands correspond
to bound states of the EM field in a finite slab of the crystal and
decrease exponentially outside the slab on either side of it. To dem-
onstrate this, we determined the eigenmodes of a (001) slab of the
given crystal, consisting of NL ¼ 4 planes of spheres, for kk ¼ ð0; 0Þ.
Over the frequency range of each of these bands we obtain four
eigenfrequencies which, plotted against values of the reduced
wave number kz ¼ np=ðNL þ 1Þ; n ¼ 1;2; . . . ;NL; ðNL ¼ 4Þ, repro-
duce the corresponding dispersion curves of the infinite crystal
as shown by the open circles in Fig. 2.

The eigenmodes at the center of the Brillouin zone, k ¼ ð0;0;0Þ,
have the symmetry of the full O point group, while at the bound-
aries of the Brillouin zone, k ¼ ð0;0;�p=dÞ, they have the symme-
try of the D4 point group, which is a subgroup of O. Compatibility
between the irreducible representations of the O and C4 and of
the D4 and C4 groups (see Table 1) implies that the optically active
LCP and RCP bands along the [001] direction, of E1 and E2 symme-
try, respectively, converge to doubly degenerate modes of E sym-
metry at the corresponding boundaries of the Brillouin zone and



Table 1
Compatibility relations between the irreducible representations of the O and C4, and
of the D4 and C4 groups.

O A1 A2 E T1 T2

C4 A B A B A E1 E2 B E1 E2

D4 A1 B1 A2 B2 E
C4 A B A B E1E2
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to three-fold degenerate ðT1 or T2Þ modes at the center of the
Brillouin zone, as shown in Fig. 2. Another interesting feature in
the band diagram of Figs. 1 and 2 follows from invariance
under time reversal, which reflects reciprocity as in the case of
nonchiral photonic crystals: though xnE1 ðkÞ– xnE1 ð�kÞ and
xnE2 ðkÞ– xnE2 ð�kÞ, because of the lack of space-inversion symme-
try, xnE1 ðkÞ ¼ xnE2 ð�kÞ, where n ¼ 1;2; . . . is a band index. We
note that polarization selectivity and existence of optically inactive
bands apply along high-symmetry directions, such as [001] or
[111]. Along an arbitrary direction, all bands belong to the identity
representation and thus can be excited by an appropriately inci-
dent wave of any polarization.

At low frequencies (below xa0=c � 2) we obtain nondegenerate
extended bands of LCP and RCP modes, of E1 and E2 symmetry,
respectively, as expected for propagation in a homogeneous chiral
effective medium, in the reduced zone representation because of
structure periodicity. At higher frequencies, the dispersion diagram
is characterized by narrow bands, which originate from the reso-
nant modes of the individual spheres, weakly interacting between
them. The E1 and E2 components of these resonance bands interact
with the extended effective-medium bands of the same symmetry
to produce the band structure shown in Figs. 1 and 2. It can be seen
that frequency gaps open up as a result of anticrossing interactions,
with consequent strong band bending and negative-slope disper-
sion inside the Brillouin zone. We note that the total number of
bands shown in Fig. 1 equals the number expected from the inter-
action of the resonance bands with the ‘‘would be’’ extended effec-
tive-medium bands. For example, as can be seen in Fig. 2, the
dipole resonances of the individual spheres give a threefold degen-
erate mode of T1 symmetry at the center of the Brillouin zone,
which is separated into an E1, an E2, and an A band along the
[001] direction. Correspondingly, the quadrupole resonances give
a threefold degenerate T2 mode and a doubly degenerate E mode
at k ¼ ð0;0;0Þ. These are separated into an E1, an E2, and a B band
and into an A and a B band along the [001] direction, respectively.

In summary, our results show that the photonic band structure
of 3D chiral/nonchiral periodic composites exhibits remarkable
features that endow these crystals with functionalities such as neg-
ative refraction, polarization-dependent slow-light transport,
photospin splitting and filtering.
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