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A detailed and rigorous theoretical investigation of the optical properties of a generic three-dimensional
chiral structure of plasma spheres, without and under the action of an external static uniform magnetic field, is
presented. Corresponding photonic band diagrams in conjunction with relevant transmission spectra, calculated
by the full electrodynamic layer-multiple-scattering method properly extended to the case of gyrotropic spherical
scatterers, are discussed in the light of the theory of nonsymmorphic space groups. This analysis provides
a consistent interpretation of some remarkable features and effects like Dirac points, polarization-dependent
transmission, as well as band splitting and non-reciprocal optical response that emerge as a result of time-reversal-
symmetry breaking, induced by the external static magnetic field, and the lack of space-inversion symmetry in the
crystal.
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I. INTRODUCTION

The electromagnetic (EM) properties of a medium can be
efficiently manipulated by periodic structuring on a length
scale comparable to the corresponding wavelength, thus
offering impressive possibilities for tailoring the light-matter
interaction. In recent years, considerable effort has been
devoted to the investigation of so-called magnetophotonic
crystals. These are macroscopic structures in which the EM
response of at least one of the constitutive building units
can be controlled by a static magnetic field and exhibit very
interesting properties. For example, it has been established
that, in such composites media, strong photon confinement
in the vicinity of magnetically active components results in
large enhancement of linear and nonlinear magneto-optical
effects (see Ref. 1 and references therein). On the other hand,
the influence of a static magnetic field on light propagation
in random media and consequent phenomena, which mirror
corresponding effects for charge transport in a magnetic field,
has also been studied both experimentally and theoretically
(see Ref. 2 and references therein).

The gyrotropic response of materials, induced by a static
uniform magnetic field (the Faraday effect) oriented along, say,
the z direction, is described by a relative electric permittivity
and/or magnetic permeability tensor of the form

←→εg =
⎛
⎝ εr −iεκ 0

iεκ εr 0
0 0 εz

⎞
⎠ , ←→μg =

⎛
⎝ μr −iμκ 0

iμκ μr 0
0 0 μz

⎞
⎠ . (1)

Because of the lack of local time-reversal symmetry, gy-
rotropic materials are ideally suited for designing nonrecip-
rocal photonic devices,3,4 which are of crucial importance in
optical communication and computing technologies because
of their ability to eliminate crosstalk and feedback. Spectral
nonreciprocity is in principle encountered in systems which
lack both time-reversal and space-inversion symmetries,5 such
as magnetophotonic structures without an inversion center,
and various designs have been proposed and elaborated
for this purpose.6–11 Moreover, there has been consider-
able interest in the occurrence of topologically nontrivial

photonic modes, such as chiral edge states, in appropriately
designed magnetophotonic structures,12–22 which allow for
reflection-free transport of light even in the presence of strong
disorder.

In the present paper we report a thorough theoretical
investigation of the optical properties of a generic
three-dimensional chiral photonic crystal consisting of plasma
spheres in a helical arrangement, and we study, in particular,
the effect of an external static uniform magnetic field by
means of full electrodynamic calculations using the layer-
multiple-scattering method23,24 properly extended to the case
of gyrotropic spherical scatterers. A comprehensive analysis
of calculated photonic band diagrams in conjunction with
corresponding transmission spectra, in the light of the theory
of nonsymmorphic space groups, clarifies the origin of some
remarkable features and effects like Dirac points, polarization-
dependent transmission, band splitting, and nonreciprocal
optical response, to a degree that goes beyond existing
interpretation.

II. DESCRIPTION OF THE CRYSTAL

We consider a tetragonal crystal defined by the primitive lat-
tice vectors a1 = (a,0,0), a2 = (0,a,0), and a3 = (0,0,d) and
a basis of four plasma spheres, of radius S, centered at (0,0,0),
(b,0,d/4), (b,b,d/2), and (0,b,3d/4), as shown in Fig. 1,
embedded in a homogeneous host medium of relative electric
permittivity ε = 1 and magnetic permeability μ = 1. This chi-
ral crystal structure, originally proposed with dielectric spheres
as an artificial optically active material,25 was later investigated
with plasma spheres in relation to the occurrence of negative-
slope photonic bands,26 and a Dirac point in the photonic
band structure was identified at the center of the first Brillouin
zone.27 Today, such structures can be realized in the laboratory
using modern nanofabrication methods like lithography28,29

and directed assembly,30,31 and, recently, the poten-
tial of the DNA origami approach for the programmable and
nanometer-precise design of helical assemblies of metallic
nanoparticles was also demonstrated.32,33
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FIG. 1. (Color online) The unit cell of the crystal under con-
sideration: A tetragonal lattice with a basis of four plasma spheres
described by the Drude relative electric permittivity of Eq. (2), of
radius S = 0.2c/ωp , in a helical arrangement along the z direction
(a = c/ωp, d = 2c/ωp,b = 0.3c/ωp) and the corresponding first
Brillouin zone.

We assume that the plasma spheres are described by a
relative magnetic permeability μp = 1 and by the simple yet
effective Drude relative electric permittivity:34

εp = 1 − ω2
p

ω(ω + i/τ )
, (2)

where τ is the relaxation time of the free carriers and ωp is
the bulk plasma frequency: ω2

p = ne2/(mε0), with ε0 being
the vacuum permittivity and n, −e, and m being the carrier
density, charge, and mass, respectively, which naturally
introduces c/ωp as the length unit, c being the velocity of
light in vacuum. We note that, assuming h̄ωp � 10 eV, which
is a typical value for metals, c/ωp corresponds to about 20
nm. For semiconductors, on the other hand, as their carrier
densities can be easily varied within a broad range of values,
which are much lower than those in metals, the plasma
frequency is much smaller (typically at mid- and far-infrared
frequencies) and the length unit c/ωp increases accordingly.
For the crystal under consideration, we take a = c/ωp,
d = 2c/ωp, S = 0.2c/ωp, and b = 0.3c/ωp.

In the presence of a static uniform magnetic field B,
the response of a plasma to a time-harmonic EM wave
of angular frequency ω, with electric-field component E =
E0 exp(−iωt), is described by the equation of motion of the
electrons: mr̈ = −mτ−1ṙ − eE − eṙ × B. The resulting po-
larization density, P = −ner, defines an electric displacement
vector D = ε0E + P and finally yields the relative electric
permittivity tensor ←→εg of the magnetized plasma through
D = ε0

←→εg E. Defining the cyclotron resonance frequency,
ωc = eB/m, if B is oriented along the z direction, after some
straightforward algebra we find that ←→εg has the gyrotropic

form given by Eq. (1) with

εr = 1 − ω2
p[1 + i/(τω)]

(ω + i/τ )2 − ω2
c

,

εz = 1 − ω2
p

ω(ω + i/τ )
, (3)

εκ = −ωc

ω

ω2
p

(ω + i/τ )2 − ω2
c

.

We note that, by setting ωc = 0, ←→εg becomes a diagonal tensor
with all of its diagonal elements equal to εp given by Eq. (2), as
expected. In our calculations we shall neglect dissipative losses
(τ−1 = 0) in order to ensure an unambiguous interpretation of
the photonic band structure.

III. METHOD OF CALCULATION

We study the optical properties of the crystal under consid-
eration, without and under the action of the static magnetic
field, by means of rigorous full electrodynamic calcula-
tions using the layer-multiple-scattering method,23,24 properly
extended to the case of gyrotropic spherical scatterers.35

In this method, the properties of the individual scatterers
enter only through the corresponding T matrix. The EM
field at a given frequency is expanded into proper vector
spherical waves, inside and outside the scatterer, and the
T matrix is obtained by matching the appropriate boundary
conditions at the surface of the scatterer. In a gyrotropic
sphere, the multipole expansion involves vector spherical
waves of different wave numbers. These wave numbers and the
corresponding EM field expansion coefficients are given by the
eigenvalues and eigenvectors of a matrix, which involves only
the elements of the corresponding relative electric permittivity
(and/or magnetic permeability) tensor and angular momentum
numbers. Following this approach, which has been elaborated
by different authors,36–39 we finally obtain a nondiagonal
scattering T matrix in the given spherical-wave representation
from a set of coupled linear equations that relate the expansion
coefficients of the scattered field to those of the incident field.

Within the layer-multiple-scattering method, we view a
three-dimensional crystal as a sequence of layers of scatterers
parallel to the x–y plane. The layers must have the same two-
dimensional periodicity, while periodicity in the z direction is
not a prerequisite. At a first step, in-plane multiple scattering
is evaluated in the given spherical-wave basis using the T

matrix of the individual scatterers and proper propagator
functions. Subsequently, interlayer scattering is calculated in
a plane-wave basis through appropriate transmission and re-
flection matrices, by including all propagating and evanescent
components of the wave field necessary to obtain convergence.
In this way, interaction between the scatterers is fully taken into
account. Truncating the spherical-wave expansions at lmax = 3
and taking into account 37 two-dimensional reciprocal-lattice
vectors in the relevant plane-wave expansions,23,24 we ensure
good convergence in our calculations for the structure under
consideration.

The scattering S matrix of a multilayer slab, which trans-
forms the incident into the outgoing wave field, is obtained
by combining the transmission and reflection matrices of the
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component layers. The ratio of the transmitted or reflected
energy flux to the energy flux associated with the incident
wave defines the transmittance or reflectance of the slab,
respectively. On the other hand, for a three-dimensional crystal
consisting of an infinite periodic sequence of layers, stacked
along the z direction, applying the Bloch theorem for the wave
field in the region between two consecutive unit slices leads
to an eigenvalue equation, which gives the z component of
the Bloch wave vector, kz, for the given angular frequency
ω and in-plane wave-vector component reduced within the
surface Brillouin zone, k‖, which are conserved quantities
in the scattering process. The eigenvalues kz(ω,k‖), looked
upon as functions of real ω, define, for each k‖, lines in the
complex kz plane. Taken together they constitute the complex
band structure of the infinite crystal associated with the given
crystallographic plane. A line of given k‖ may be real (in
the sense that kz is real) over certain frequency regions and
be complex (in the sense that kz is complex) for ω outside
these regions. It turns out that, for given k‖ and ω, out of
the eigenvalues kz(ω,k‖), none or, at best, a few are real and
the corresponding eigenvectors represent propagating modes
of the EM field in the given infinite crystal. The remaining
eigenvalues kz(ω,k‖) are complex, and the corresponding
eigenvectors represent evanescent waves. These have ampli-
tudes which increase exponentially in the positive or negative
z direction and, unlike the propagating waves, do not exist as
physical entities in the infinite crystal. However, they are an
essential part of the physical solutions of the EM field in a slab
of finite thickness. A region of frequency where propagating
waves do not exist, for given k‖, constitutes a frequency gap
of the EM field for the given k‖. If over a frequency region
no propagating wave exists whatever the value of k‖, then this
region constitutes an absolute frequency gap.

IV. RESULTS AND DISCUSSION

To begin with, we summarize the main features of the
photonic band structure of the crystal under study, in the
absence of a static magnetic field. As shown in Fig. 2, along
the [001] direction, at low frequencies (below ω ≈ 0.55ωp)

FIG. 2. Photonic band structure of the crystal of Fig. 1 along its
[001] direction, in the absence of a static magnetic field. An enlarged
view of the dispersion diagram in the frequency region of the narrow
bands is displayed in the margin.

we obtain two nondegenerate extended bands, so close to
each other that they are indistinguishable at the scale of the
figure, associated with propagation in a homogeneous effective
medium. At higher frequencies, the dispersion diagram is
characterized by the presence of narrow bands, which originate
from the dipole particle-plasmon modes of the individual
spheres, at ω1 = 0.575ωp, weakly interacting between them,
and hybridize with the extended bands giving rise to frequency
gaps. We note that the total number of these narrow bands,
which are displayed in an enlarged view in the margin of
Fig. 2, is 12, as expected from the threefold degeneracy of the
dipole particle-plasmon modes of the sphere and the number
of spheres per unit cell (12 = 3 × 4). Narrow bands stemming
from higher multipole particle-plasmon modes are above the
frequency region under consideration. It is worth noting that,
though the crystal under study does not posses space-inversion
symmetry, the symmetry ω(k) = ω(−k) persists because of
time-reversal symmetry.

A rigorous and consistent analysis of the symmetry prop-
erties of the photonic band structure of Fig. 2, which goes
beyond existing interpretation, is provided by the theory of
nonsymmorphic space groups. In the absence of a static
magnetic field, the crystal of Fig. 1 remains invariant under the
operations of the nonsymmorphic space group D7

4, described
in the Appendix. Along the � direction, i.e., for k = (0,0,kz)
(see Fig. 1) the frequency bands have the symmetry of
the irreducible representations of the relevant factor group,
G(k)/T (k) (see Table I), and not of a fixed point group as in
the case of symmorphic space groups.40,41 The bands along
this direction are nondegenerate since all the irreducible rep-
resentations of the factor group of Table I are one dimensional.
Moreover, none of these bands corresponds to purely left- or
right-circularly polarized (LCP and RCP, respectively) Bloch
modes because no irreducible representation of this factor
group has LCP and RCP basis functions. There is a different
degree of LCP and RCP admixture that varies along a specific
band, as presented by the color scale in Fig. 3 that shows
the projection of the corresponding eigenvector onto the basis
spanned by the LCP and RCP states. It is also interesting
to note that the correspondence between the irreducible
representations—�1(φ) → �4(φ−π), �2(φ) → �3(φ−π), �3(φ) →
�1(φ−π), �4(φ) → �2(φ−π), which can be easily established
from Table I—accounts for the invariance of Bloch modes
that differ by a reciprocal-lattice vector in the present case,
i.e., by (0,0,2πn/d), n = 0,±1,±2, . . ., as requested (see
Fig. 3). At the center 	 of the first Brillouin zone, i.e., for
k = (0,0,0), the relevant factor group is isomorphic to the point
group D4 (see Table II). Compatibility between the irreducible
representations of D4 and of the factor group of Table I, for

TABLE I. Character table of the factor group G(k)/T (k) for k
on the axis � [k = (0,0,kz)] for the space groups D7

4 and C4
4 [w1 =

exp(−iφ), w2 = exp(iφ/2) with φ = kzd/2].

�1(φ) �2(φ) �3(φ) �4(φ)

{Ê|0}T (k) 1 1 1 1
{Ĉ2z|2τ }T (k) w1 w1 −w1 −w1

{Ĉ4z|τ }T (k) w∗
2 −w∗

2 iw∗
2 −iw∗

2

{Ĉ−1
4z |−τ }T (k) w2 −w2 −iw2 iw2
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FIG. 3. (Color online) Photonic band structure of the crystal of
Fig. 1 along its [001] direction, in the absence of a static magnetic
field, in the frequency region about the lowest flat bands. The
different bands are labeled by the index of the relevant irreducible
representation of the appropriate factor group G(k)/T (k) for k =
(0,0,kz) (see Table I). Inset: Enlarged view of the dispersion diagram
in the region about the crossing points indicated by the arrow. Next to
the band diagram we depict corresponding transmission spectra for
LCP and RCP light incident normally on a (001) slab of the crystal
consisting of 16 layers of spheres.

φ = 0, implies that the bands of �3(φ) and �4(φ) symmetry
along the � direction converge to a doubly degenerate point
of E symmetry at the center of the first Brillouin zone.
This is indeed observed in Fig. 3, at ω = 0.557ωp, where
two such bands cross linearly at the Dirac point identified
by Yannopapas.27 At the Z point, i.e., for k = (0,0,±π/d),
all the permissible irreducible representations of the relevant
factor group are two dimensional (see Table III), and this
explains the fact that at this zone boundary all bands are paired
and sticking together, giving rise to additional Dirac points
as shown in Fig. 3. Compatibility between the permissible
irreducible representations of the factor group associated with
point Z and those of the factor group associated with the
direction �, for φ = π/2, implies that the bands of �1(φ) and
�3(φ) symmetry converge to a doubly degenerate mode of
Za symmetry and the bands of �2(φ) and �4(φ) symmetry
converge to a doubly degenerate mode of Zb symmetry
at k = (0,0,π/d). Correspondingly, the bands of �1(φ) and
�4(φ) symmetry converge to a doubly degenerate mode of

TABLE II. Character table of the point group D4.

A1 B1 A2 B2 E

Ê 1 1 1 1 2
Ĉ2z 1 1 1 1 −2
Ĉ4z,Ĉ

−1
4z 1 −1 1 −1 0

Ĉ2x,Ĉ2y 1 1 −1 −1 0
Ĉ2a,Ĉ2b 1 −1 −1 1 0

TABLE III. Characters of the permissible irreducible representa-
tions of the factor group G(k)/T (k) at the point Z [k = (0,0,±π/d)]
for the space group D7

4 .

Za Zb

{Ê|0}T (k) 2 2
{Ê|4τ }T (k) −2 −2
{Ĉ4z|τ }T (k),{Ĉ−1

4z |−τ }T (k)
√

2 −√
2

{Ĉ4z|−3τ }T (k),{Ĉ−1
4z |3τ }T (k) −√

2
√

2
{Ĉ2z|2τ }T (k),{Ĉ2z|−2τ }T (k) 0 0
{Ĉ2x |2τ }T (k),{Ĉ2y |4τ }T (k), 0 0
{Ĉ2x |−2τ }T (k),{Ĉ2y |0}T (k)
{Ĉ2a |τ }T (k),{Ĉ2a|−3τ }T (k), 0 0
{Ĉ2b|−τ }T (k),{Ĉ2b|3τ }T (k)

Za symmetry and the bands of �2(φ) and �3(φ) symmetry
converge to a doubly degenerate mode of Zb symmetry at
k = (0,0,−π/d), as shown in Fig. 3.

In Fig. 3, next to the band diagram, we depict corresponding
transmission spectra for LCP and RCP light incident normally
on a (001) slab of the crystal consisting of 16 layers of spheres.
The characterization of the band eigenmodes by their degree of
LCP and RCP admixture allows for a consistent interpretation
of the transmission spectra. In the frequency region extending
from 0.546ωp to 0.549ωp, we can see that the modes with
positive group velocity have a predominant LCP character and
thus they couple predominantly to a plane EM wave with the
same circular polarization incident normally on a (001) slab
of the crystal. This holds for incidence from either side of the
given reciprocal chiral slab since reversing the propagation
direction reverses the handedness of the polarization of
the plane wave. Therefore we have polarization-selective
transmission, where only incident waves with predominant
LCP polarization are allowed to pass through.

If we assume that a static uniform magnetic field is
applied along the z direction, the scalar Drude permittivity
of the plasma spheres becomes a tensor, ←→εg , which has the
gyrotropic form given by Eq. (1), where εr , εz, and εκ are
given by Eq. (3) with τ−1 = 0 since we neglect dissipative
losses, and the symmetry of the structure is now described
by the nonsymmorphic space group C4

4 (see the Appendix).
In Fig. 4 we depict the calculated photonic band structure in
this case, assuming ωc = 0.01ωp. This value of ωc, though
it is by an order of magnitude smaller than that used by
Yu et al.,7 for metals corresponds to a prohibitively strong
magnetic field, of the order of 103 T, but for semiconductors
the field becomes much weaker, of the order of 1 T or less.
Along the � direction, the different bands are labeled by
the index of the relevant irreducible representation of the
appropriate factor group G(k)/T (k) for k = (0,0,kz), which
is the same as in the absence of a static magnetic field (see
Table I). As dictated by group theory, again, the bands along
this direction are nondegenerate and the associated Bloch
modes are characterized by a different degree of LCP and
RCP admixture that varies along a specific band. However,
now, since the factor groups which are relevant for the 	 and
Z points support only one-dimensional permissible irreducible
representations (see Tables IV and V), all degeneracies at these
points are removed. For example, as shown in Fig. 4, bands
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TABLE IV. Character table of the point group C4.

A B E1 E2

Ê 1 1 1 1
Ĉ2z 1 1 −1 −1
Ĉ4z 1 −1 i −i

Ĉ−1
4z 1 −1 −i i

3 and 4 do not cross each other at the Dirac point at the
center of the first Brillouin zone and split apart, as anticipated
by Yannopapas on the basis of a simple model.27 However,
here, in addition to this splitting, spectral nonreciprocity,
ω(k) 	= ω(−k), is also clearly manifested as a result of
time-reversal symmetry breaking in conjunction with the lack
of space-inversion symmetry. We note that the invariance of
Bloch modes that differ by a reciprocal-lattice vector, i.e., here
by (0,0,2πn/d), n = 0,±1,±2, . . ., is not violated (see Fig. 4).

In Fig. 4, next to the band diagram, we depict the
corresponding transmittance of a (001) slab of the crystal
consisting of 16 layers of spheres, for LCP and RCP light
incident in (+) and opposite to (−) the direction of the
static magnetic field. Though there is no frequency region
where only modes with positive or negative group velocity
exist, interestingly, in the range from 0.554ωp to 0.558ωp we
have polarization-selective one-way transmission, where LCP
waves are predominantly transmitted in the direction of the
static magnetic field while RCP waves are transmitted only

FIG. 4. (Color online) Photonic band structure of the crystal of
Fig. 1 along its [001] direction, in a static uniform magnetic field
corresponding to ωc = 0.01ωp applied along the z direction, in the
frequency region about the lowest flat bands. The different bands are
labeled by the index of the relevant irreducible representation of the
appropriate factor group G(k)/T (k) for k = (0,0,kz) (see Table I).
Next to the band diagram we depict the corresponding transmittance
of a (001) slab of the crystal consisting of 16 layers of spheres, for
LCP and RCP light incident in (+) and opposite to (−) the direction
of the static magnetic field. In the right-hand diagram we display
the absolute value of the difference between the transmittance in the
forward and backward direction, D, which is practically the same for
LCP and RCP light.

TABLE V. Characters of the permissible irreducible representa-
tions of the factor group G(k)/T (k) at the point Z [k = (0,0,±π/d)]
for the space group C4

4 [w = exp(iπ/4)].

Z1 Z2 Z3 Z4

{Ê|0}T (k) 1 1 1 1
{Ê|4τ }T (k) −1 −1 −1 −1
{Ĉ4z|τ }T (k) w∗ −w∗ w −w

{Ĉ4z|−3τ }T (k) −w∗ w∗ −w w

{Ĉ−1
4z |−τ }T (k) w −w w∗ −w∗

{Ĉ−1
4z |3τ }T (k) −w w −w∗ w∗

{Ĉ2z|2τ }T (k) −i −i i i

{Ĉ2z|−2τ }T (k) i i −i −i

in the opposite direction. The degree of nonreciprocity can be
quantified by the absolute value of the difference between
the transmittance in the forward and backward direction.
This quantity, which vanishes identically if there is no static
magnetic field, is displayed in the right-hand diagram of Fig. 4
and is practically the same for LCP and RCP light in the
spectral range under consideration. It is worth noting that
the frequency regions of increased nonreciprocal response
are related to stronger field localization inside the gyrotropic
spheres.42

V. CONCLUSIONS

In summary, we extended our layer-multiple-scattering
method to photonic crystals of gyrotropic spheres using the
generalized Mie approach for the evaluation of the single-
scatterer T matrix in our spherical-wave basis. By employing
this method, we calculated the photonic band structure of a chi-
ral crystal of plasma spheres and corresponding transmission
spectra of a finite slab of it, without and under the action of an
external static uniform magnetic field. Our results reveal the
existence of some intriguing features and effects like Dirac
points and polarization-dependent transmission, as well as
band splitting and non-reciprocal optical response that stem
from time-reversal-symmetry breaking, by virtue of the static
magnetic field, in conjunction with the lack of space-inversion
symmetry in the crystal. A comprehensive analysis of the
results in the light of the theory of nonsymmorphic space
groups, which applies to a broader class of photonic crystals
that possess nonprimitive translations in their symmetry
group, explains consistently all of the observed features and
effects to a degree that goes beyond existing interpretation.
In this respect, it should be noted that, though there are
interesting analogies between electron spin-orbit interaction
and optical chirality,27,43 there is a fundamental difference
between electrons, which are spin-one-half fermions, and
photons, which are spin-one bosons. For an electron, a rotation
by 2π changes the sign of the spin function and the identity
operation corresponds to a rotation through 4π , while the
polarization vector of a photon remains invariant under a 2π

rotation. As a result, the symmetry of electron energy bands
in crystalline solids, in the presence of spin-orbit coupling, is
described by an appropriate double space group,44 while for
chiral photonic crystals single nonsymmorphic space groups
are relevant.
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APPENDIX

In this Appendix we apply basic concepts of group theory,
and in particular relating to nonsymmorphic space groups,
to establish the necessary background for the analysis of
symmetry properties of the photonic bands in the structures
under study. In general, the symmetry operations that leave a
crystal invariant form a group, which is called space groupG of
the crystal. A space-group operation, {P̂ | τp + R}, transforms
a point r to Pr + τp + R, where R is a vector of the underlying
Bravais lattice and τp is a nonprimitive translation associated
with a (proper or improper) rotation P̂ , described by the 3 × 3
orthogonal matrix P, of the corresponding crystallographic
point group G0. For a symmorphic space group, τp can be
taken to be zero for every P̂ , which is not the case for a
nonsymmorphic space group.

The space group of the crystal of Fig. 1, in the absence
of a static magnetic field, is D7

4.45 It comprises all com-
binations of primitive translations of the tetragonal lattice,
R = n1a1 + n2a2 + n3a3, where a1 = (a,0,0), a2 = (0,a,0),
a3 = (0,0,d), and n1,n2,n3 = 0,±1, . . . , with the following
symmetry operations: {Ê|0} (identity), {Ĉ2z|2τ } (rotation
through π about the z axis followed by a translation by 2τ ),
{Ĉ4z|τ } (rotation through π/2 about the z axis followed by a
translation by τ ), {Ĉ−1

4z |−τ } (rotation through −π/2 about the
z axis followed by a translation by −τ ), {Ĉ2x |2τ } (rotation
through π about the x axis followed by a translation by 2τ ),
{Ĉ2y |0} (rotation through π about the y axis), {Ĉ2a|τ } (rotation
through π about the [110] axis followed by a translation by
τ ), and {Ĉ2b|−τ } (rotation through π about the [1̄10] axis
followed by a translation by −τ ), where τ= (0,0,d/4). Under
a static uniform magnetic field along the z direction, the
scalar Drude relative electric permittivity of the plasma spheres
becomes a tensor, ←→εg , which has the gyrotropic form given by
Eq. (1). Therefore only the rotations P̂ = Ê,Ĉ2z,Ĉ4z,Ĉ

−1
4z that

leave this tensor invariant (P←→εg P−1 = ←→εg ) are allowed in the
space-group operations, and thus the space group is reduced
to C4

4 .45

The symmetry of the photonic bands is determined by
the group G(k) of the corresponding wave vector k. This
is a subgroup of the space group G and consists of all
transformations {P̂ |τp + R} having the property Pk = k + K,
where K is some reciprocal-lattice vector, which may be zero.
If we define the group T (k), which consists of all primitive
translations {Ê|R} that satisfy the equation exp(−ik · R) = 1,
T (k) is obviously a subgroup of the group T of all primitive
translations. Moreover, it is an invariant subgroup of G(k)
and thus it is possible to form the factor group G(k)/T (k).
In general, the irreducible representations of G(k) can be
obtained from those of G(k)/T (k) which satisfy the ap-
propriate conditions, and thus the photonic bands have the
symmetry of the permissible irreducible representations of
the corresponding factor groups. Though for symmorphic
space groups the problem is reduced in finding the irreducible
representations of the corresponding point group, G0(k), for
nonsymmorphic space groups, the factor group is not in general
isomorphic to a point group, so that finding its permissible
irreducible representations is not straightforward. A method
for the construction of character tables for these groups has
been proposed by Herring.46

The character table of the factor group G(k)/T (k) for k on
the axis � (see Fig. 1), for both space groups (D7

4 and C4
4 )

which are relevant in this work, is given in Table I. At point
	 (k = 0), the factor group G(k)/T (k) is equal to G/T ,
which is isomorphic to the point group G0, i.e., D4 or C4

for the D7
4 or C4

4 space groups, respectively. The character
tables for these point groups are given in Tables II and
IV. For point Z, for which k = (0,0,π/d), T (k) contains
all the primitive translations {Ê|n1a1 + n2a2 + n3a3}, except
those for which n1 is an odd integer. The factor group
G(k)/T (k) contains, therefore, twice as many elements as for
	. Tables III and V give the character tables of G(k)/T (k)
for Z, for the D7

4 and C4
4 space groups, including only the

permissible irreducible representations, i.e., those for which
the character for the element {Ê|4τ } is equal to minus their
dimension.
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