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Using the rigorous Green’s function spectral method, we
systematically investigate the scattering resonances of
different types of Vogel spiral arrays of point-like scatterers.
By computing the distributions of eigenvalues of the
Green’s matrix and the corresponding eigenvectors, we
obtain important physical information on the spatial nature
of the optical modes, their lifetimes and spatial patterns, at
small computational cost and for large-scale systems.
Finally, we show that this method can be extended to
the study of three-dimensional Vogel aperiodic metamate-
rials and aperiodic photonic structures that may exhibit a
richer spectrum of localized resonances of direct relevance
to the engineering of novel optical light sources and sensing
devices. © 2016 Optical Society of America
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scattering; (350.4238) Nanophotonics and photonic crystals.
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The ability to efficiently design and characterize localized
electromagnetic modes and photonic bandgaps in periodically
ordered dielectric media unveiled fascinating analogies between
electronic and classical wave phenomena that led to numerous
device applications to optics and nanophotonics [1]. Optical
metamaterials with periodically arranged resonant building-
blocks of sub-wavelength dimensions have been recently dem-
onstrated to exhibit unusual optical functionalities [2]. On the
other hand, controlling light transport and optical resonances
in disordered media with random refractive index fluctuations
poses a significant challenge from a design perspective. Indeed,
despite classical waves in random media sharing fundamental
similarities with transport phenomena in electronic systems,
such as the Anderson localization of light [3–5], disordered op-
tical structures lack the reproducible and predictable behavior
that is necessary for designing many advanced optical devices.

To circumvent these difficulties, artificial optical media with
a tunable degree of aperiodic structural order generated by
deterministic mathematical rules have emerged as an alternative
platform for engineering novel devices [6–8]. Deterministic
aperiodic structures manifest distinctive optical responses that

cannot be found in either periodic or random systems, such as
fractal transmission spectra and anomalous transport proper-
ties. Also, they have a rich spectrum of optical modes with vari-
ous degrees of spatial localization, known as “critical modes.”
They manifest a power-law localization scaling with highly
fragmented multi-fractal envelopes with applications in
multi-mode lasing and optical sensing [8–13].

Among the various deterministic aperiodic optical systems
investigated so far, the Vogel spiral arrays of nanoparticles
are particularly appealing due to their wide structural tunability
that interpolates in a tunable fashion in between short-range
correlated amorphous/liquid systems and uncorrelated random
ones [9–13]. Vogel spirals are ordered structures that lack both
translational and rotational symmetry. Different from standard
photonic crystals and quasi-crystals, their spatial Fourier spectra
do not exhibit well-defined Bragg peaks, but rather, broad and
diffuse circular rings whose position is controlled by simple de-
sign rules. The positions of particles in Vogel spiral arrays are
simply obtained in polar coordinates by [14–16]

r � a
ffiffiffi
n

p
; (1)

θ � nα; (2)

where n � 0; 1; 2;… is an integer, a is the scaling factor deter-
mining particle separation, and α is the divergence angle. In the
case of the “sunflower spiral,” also called the golden-angle spiral
(GA-spiral), α ≈ 137.508° is an irrational number. Previous
studies have focused on the three most investigated types of
aperiodic spirals, including the GA-spiral and two other
Vogel spirals obtained by the following choice of divergence
angles: 137.3° (i.e., α1-spiral) and 137.6° (i.e., β4-spiral). In
order to efficiently design and engineer novel devices that fully
leverage the critical modes of the photonic Vogel’s spiral, we
need to resort to a scalable approach capable of directly captur-
ing the rich spectral-spatial properties of scattering resonances
in open two-dimensional (2D) and three-dimensional (3D)
large-scale aperiodic media.

In this Letter, we propose to address this important issue for
both planar and 3D Vogel spiral metamaterials using the effi-
cient Green’s matrix method. The analysis of the Green’s matrix
spectra has been proven to be a very powerful tool to address
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different aspects of light propagation in open random media,
such as the Anderson localization of light [17–20] and matter
waves [21], random lasing [22,23], light transport in nonlinear
media [24], and superradiance in atomic random systems
[25–28]. An analytical theory has been developed for the eigen-
value density of Green’s matrices, providing fundamental
insights into light propagation in disordered media [29–31].
However, the application of this powerful method has been
mostly limited to random media so far. The purpose of the
present Letter is, hence, to systematically apply this method
to investigate multiple light scattering for Vogel spiral arrays,
which will allow us to unveil the complex properties of their
scattering resonances, which are not usually obtained by means
of purely numerical methods, such as the finite difference time
domain (FDTD) method.

To this end,we consider a systemofN identical point-dipoles
described by a scattering matrix t and arranged to form a Vogel
spiral array subjected to an incident plane wave excitation Ψ0.
The Foldy–Lax self-consistent multiple scattering equations
for the local excitation fields at the dipoles can be written as

Ψ�ri� � Ψ0�ri� � t
XN
i;j�1

G�rij�Ψ�rj�; (3)

where the complex-valued 3N × 3N dyadic Green’s matrix
G�ω; rij� describes the radiation scattered by the dipole located
at rj on the dipole located at ri [17,20]. These equations can be
deriveddirectly fromMaxwell’s equations and treatmultiple scat-
tering exactly by taking all scattering orders into account [32].
The elements of the 3N × 3N Green’s matrix are equal to the
Green’s functions calculated from the relative positions rij of
the N pointlike scatterers [33]:

Gij�ω; rij� �
�
−
exp�ikrij�
i4πrij

n
�U − brijbrij� − � 1

ikrij
� 1

�krij�2
�
�U − 3brijbrij�o for i ≠ j;

0 for i � j;
(4)

where U is the unit matrix and k the wavenumber.
In this work, we will perform a direct numerical diagonal-

ization of G and demonstrate that for strong scattering systems
the eigenvalue spectra of Green’s matrices are significantly
different from the case of random systems, and that the corre-
sponding eigenvectors closely reproduce the critically localized
mode patterns of the Vogel spirals. Moreover, we determine
the position and widths of the Vogel spiral resonances and
correlate them with the spatial distribution of eigenmodes,
showing that they group into different classes, in excellent
agreement with prior work based on finite element simulations
of dielectric nano-cylinders of finite size [12]. Finally, we fully
leverage the scalability of the efficient Green’s matrix approach
by considering a 3D Vogel metamaterial structure, obtained by
superimposing planar Vogel spiral layers, and computing the
distribution of its scattering resonances as well as the spatial
distribution of its most localized one.

In Fig. 1 we show the computed distribution of eigenvalues
of the Green’s matrix for a 2D GA-spiral with 300 identical
scatterers for different values of kl ; the bare Ioffe–Regel
parameter kl (where l is the mean free path) that measures
the disorder strength. We assume a Breit–Wigner model for
the scatterers with one sharp resonance of width Γ0 at the

frequency position ω0. The incident frequency is set to be
the resonant frequency ω0 for which the scattering cross-
section of the dipoles is maximal [33]. We found that for
weak scattering systems (kl ≈ 100) this distribution is qualita-
tively very similar to the one reported for random scatterers,
featuring a disk-like eigenvalue distribution in agreement with
the analytical random matrix theory [30]. On the other hand,
we found that for smaller values of kl (i.e., increased scattering)

the distribution of eigenvalues significantly deviates from the
case of disordered systems. In particular, as shown in panels
(a)–(d) of Fig. 1 for the representative case of the GA-spiral,
by reducing the kl values, the eigenvalues cluster around an
increasing number of spiral branches. For small systems, the
presence of hyperbolic branches in the eigenvalue distribution
of the Green’s matrix of random systems was previously re-
ported and attributed to the onset of proximity scattering ef-
fects induced by short-range scattering correlations [17]. We
believe that the distinctively different shapes and the larger
number of branches demonstrated for the Vogel spirals directly
reflect the increased degree of spatial correlations for these sys-
tems compared to random ones. Additionally, as clear from
Fig. 1(d), the eigenvalues of the Vogel spirals cluster around
the line Re λ � −1. We recall here that the real and imaginary
parts of the eigenvalues of the G matrix are associated to the
relative widths �Γ − Γ0�∕Γ0 and frequency positions �ω −
ω0�∕Γ0 of the scattering resonances [17], and that the follow-
ing relations approximately hold: Re λ�ω0� ≃ �Γ − Γ0�∕Γ0 and
Im λ�ω0� ≃ �ω − ω0�∕Γ0. Therefore, since the real part of the
eigenvalues is related to the decay rate of the modes, a clustering
of eigenvalues around the line Re λ � −1, as in Fig. 1(d),
evidences the formation of long-lived modes in this region.

Fig. 1. Representative Green’s matrix eigenvalues distribution for a
2D GA-spiral array consisting of 300 scattering particles for different
values of kl .
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A similar behavior was also observed for the α1 and β4 Vogel
spiral geometries.

Figure 2 summarizes our findings, also, for the α1 and β4
Vogel spirals. We notice that for the large kl values (i.e.,
weak scattering), we always observe a disk-like eigenvalue
distribution independently of the specific spiral geometry. In
Figs. 2(b)–2(d), we report representative results for all of the
investigated spiral geometries in the strong scattering limit.
The red squares indicate the regions of the eigenvalue distribu-
tions where the longest-lived modes were found. There are also
regions of eigenvalues, away from the origin with a larger real
part, that correspond to leaky modes and isolated clusters of
eigenvalues that correspond to degenerated modes. Here it is
important to emphasize that the Green’s matrix spectral
method provides important physical information about light
transport in open media that cannot be obtained via other
numerical methods, such as FDTD. Indeed, in contrast to
FDTD, the Green’s matrix spectral method allows one to
not only obtain the frequency positions and lifetimes (the in-
verse of the resonance width) of scattering resonances, but also
to correlate them to the spatial distribution of optical quasi-
modes, as it will be discussed in the following. Hence, this
method permits access to the full spectral information on
Vogel spiral arrays, which have never been probed so far, as
previous studies have been based on purely numerical results
[12,13].

The spatial distributions of the long-lived modes of Vogel
spirals can be obtained by studying the eigenvectors of the cor-
responding Green’s matrix, as shown in Fig. 3. Using the spec-
tral Green’s matrix method, we can conveniently identify
different classes of modes by seeking eigenvalues with small real
parts and by moving vertically in the eigenvalue distribution
diagram (Fig. 2) in order to scan the mode frequency. By

performing this procedure, we have been able to reliably iden-
tify all of the classes of the Vogel spiral modes previously re-
ported [12,13] and extract quantitative information on the
localization character of each of these modes, in addition to
their position in frequency and widths. These classes of modes,
which are located at the multi-fractal photonic band-edges of
the dielectric Vogel spiral arrays, have a quality factor Q that
scales linearly with frequency [12,13]. As an example, in Fig. 3
we plot the distribution of the electric field magnitude of the
GA-spiral (a)–(c), α1-spiral (d)–(f ), and β4-spiral (g)–(i), with
300 scattering particles. By referring to the mode classification
in [12,13], we can see that for the GA-spiral the Green’s matrix
approach correctly yields the modes of class C. For the α1-
spiral, we obtain the modes of class B while our procedure dem-
onstrates for the first time that the modes of class D can also be
supported by the β4-spiral geometry. We notice that the modes
in this class have been reported only for the GA-spiral before
[13]. The modes of class C are located near the boundary of the
spiral structure, and therefore, exhibit stronger radiation leak-
age while the modes of class B and of class D, being mostly
localized closer to the center of the spirals, have a smaller
radioactive character.

The superior scalability of the proposed design strategy al-
lows for a novel approach to engineer 3D aperiodic photonic
structures and metamaterials. Indeed, this method can be ap-
plied to conceive a 3D Vogel spiral metamaterial as schematized
in Fig. 4(a). The structure under consideration is a 3D GA-
spiral formed by vertically cascading seven layers each of
300 scatterers in each layer. A similar study of the Green’s
matrix eigenvalues distributions is carried out for this 3D
metamaterial, and the results for the two representative distri-
butions at different kl values are shown in Fig. 4(b). In the
weak scattering limit (kl ≈ 98), we observe an eigenvalue

Fig. 2. (a) A representative Green’s matrix eigenvalues distribution
for large kl values of a 2D α1-spiral array. (b)–(d) The eigenvalues
distributions for GA-, α1-, and β4-spiral arrays, respectively, for the
kl value of interest. The regions of interesting eigenmodes, close to
the origin, are marked with red squares. All the 2D Vogel spiral arrays
consist of 300 scattering particles. In the margin, we show three panels
(b1), (c1), and (d1) where we zoom into the specific eigenvalues of
interesting modes, from the eigenvalues distribution of the diagrams
(b), (c), and (d), respectively.
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Fig. 3. Distribution of the electric field magnitude of 300 scattering
particles, of (a)–(c) class C in a GA-spiral, (d)–(f ) class B in an α1-
spiral, and (g)–(i) class D in a β4-spiral. The real and imaginary parts
of the 9 eigenvalues with the corresponding (a)–(i) modes are:
(−0.979; −0.210), (−0.976; −0.205), (−0.976; −0.115), (−0.974;
−0.697), (−0.972; −0.689), (−0.977; −0.687), (−0.525; −0.058),
(−0.516; −0.032), and (−0.501; −0.004), respectively. The eigenvalues
are shown in the panels of the margin of Fig. 2.
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distribution that is very similar to the case of random systems.
On the other hand, in the strongly scattering case (kl � 1.32),
we demonstrate the formation of several spiral branches and
observe again the clustering of eigenvalues around the line
Re λ � −1. We conclude that, despite the difference in dimen-
sionality and particle numbers, 3D Vogel spiral arrays exhibit
qualitatively similar modal properties with respect to their 2D
counterparts. To conclude our study, in Fig. 4(c) we compare
the spatial distribution of a radially localized scattering reso-
nance of a representative 2D GA-spiral array [with the eigen-
value inside the red square of the distribution of Fig. 2(b)] with
the one of the corresponding 3D structures computed from
the same region of the eigenvalues distribution map. We notice
that the two modes display remarkable structural similarities,
revealing their common nature. Based on the proposed
Green’s matrix approach, future work will address the design
of localized optical resonances in 3D aperiodic media.

In summary, we applied the rigorous Green’s matrix method
to the analysis of the scattering resonances of Vogel spiral arrays
and demonstrated that the eigenvalues and eigenvectors distri-
bution of the Green’s matrix allow us to obtain important
physical information on the spatial nature of the modes, their
lifetimes and their classification type, at a small computational
cost and for large-scale systems. We have also shown that this

method can be extended to the study of 3D Vogel aperiodic
metamaterials and aperiodic photonic structures that may
exhibit an even richer spectrum of long-lived modes of direct
relevance to novel optical light sources and sensing devices.
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(a)

(b)

(c)

Fig. 4. (a) From a 2D Vogel spiral array to a 3D Vogel spiral meta-
material, consisting of 7 layers of 300 scattering particles each. (b) Two
representative Green’s matrix eigenvalues distributions for two differ-
ent values of kl for a 3D GA-spiral metamaterial consisting of 7 layers
with 300 scattering particles in each layer. (c) A characteristic long-
lived mode of a 2D GA-spiral array (left-hand diagram) and a selected
mode of the 3D GA-spiral metamaterial (right-hand diagram). The
real and imaginary parts of the 2 eigenvalues with the corresponding
modes are (−0.802; −0.226) (left-hand diagram) and (−0.980; −0.680)
(right-hand diagram).
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