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A detailed analysis of the optical properties of photonic structures of metal-coated chiral spheres, calculated by the
full electrodynamic layer-multiple-scattering method, is presented. Easily tunable narrow bands, originating from
particle-like plasmon modes of the metallic shells, hybridize with the extended bands of the underlying effective
chiral medium and give rise to sizable partial gaps and strong band bending with consequent negative-slope dis-
persion. The photonic band diagram is discussed in the light of group theory, in conjunction with relevant trans-
mission spectra, and the occurrence of polarization-selective transmission and negative refraction for a short range
of angles of incidence is demonstrated. © 2012 Optical Society of America
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1. INTRODUCTION
Composite structures with chiral components are promising
candidates for exotic optical functions as in photonic band
engineering [1–4], nonlinear optics [5], and negative refraction
[6–14]. On the other hand, the introduction of photonic reso-
nances, such as localized plasmon modes, opens up impress-
ive possibilities for tailoring the light-matter interaction and
allows one to observe new, interesting, and potentially useful
physical phenomena. In particular, it has been suggested that
the existence of a chiral resonance, realized either in a mix-
ture of small helical inclusions [8,10] or in an assembly of re-
sonant particles in a nondispersive chiral medium [9], may
lead to negative refraction and superlensing for one polari-
zation.

In this paper, we seek to combine chirality and resonance
on a single versatile building unit: a metal-coated chiral
sphere. Chirality is provided by the core, while the metallic
shell introduces plasmonic resonances. Plasmons of the outer
and inner surfaces of the shell interact with each other and
give rise to two predominant dipole hybrid modes, one below
the lower (particle-like) and one above the higher (cavity-like)
resonances, which can be easily tuned by properly adjusting
the thickness of the shell [15–17]. By assembling such metal-
coated chiral spheres into a periodic structure, one can realize
a resonant chiral medium that shows a remarkable optical re-
sponse, including polarization-selective transmission, splitting
of circular-polarization modes with consequent negative-slope
dispersion, and negative refraction within a tunable frequency
range. These general features are not encountered in crystals
of nonchiral metal-coated spheres [17]. On the other hand,
homogeneous chiral spheres exhibit resonances only in the
strong chirality regime [4] and do not offer a versatile platform
for tailoring an effective resonant chiral medium.

The remaining of the paper is organized as follows. In
Section 2, we develop a formalism to describe electromag-
netic (EM) scattering by a single metal-coated chiral sphere
and discuss the different resonant modes of such a composite
particle. In Section 3, we undertake a comprehensive analysis

of photonic dispersion diagrams and corresponding transmis-
sion spectra of a face-centered cubic (fcc) crystal of metal-
coated chiral spheres, calculated by the full electrodynamic
layer-multiple-scattering method. Moreover, we examine the
occurrence of negative refraction at certain frequency regions
and angles of incidence on a specific crystallographic surface
of the crystal, by reference to relevant isofrequency contours
obtained from detailed photonic band-structure calculations.
Our results are summarized in Section 4.

2. RESONANT MODES OF A METAL-
COATED CHIRAL SPHERE
We assume a spherical core-shell particle of total radius S,
embedded in a homogeneous and isotropic medium (air in
our case). The shell, of inner radius Sc and thickness D
(S � Sc � D), is made of a metallic material with relative per-
meability μm � 1 and dielectric function described by the sim-
ple, yet effective, Drude model [18]

ϵm�ω� � 1 −
ω2
p

ω�ω� iτ−1� ; �1�

where τ is the relaxation time of the conduction band elec-
trons and ωp is the bulk plasma frequency that naturally intro-
duces c∕ωp as the length unit, c � 1∕

����������ϵ0μ0
p

being the velocity
of light in vacuum. We note that, assuming ℏωp ≃ 10 eV, c∕ωp

corresponds to about 20 nm.
The core is made of a chiral material, which is described by

the phenomenological Drude–Born–Fedorov constitutive re-
lations [19]

D�r; t� � ϵcϵ0�E�r; t� � βc∇ × E�r; t��; (2)

B�r; t� � μcμ0�H�r; t� � βc∇ ×H�r; t��; �3�

where ϵc, μc denote the isotropic relative permittivity and per-
meability, respectively, and βc is the chirality parameter, in
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units of length, which can be deduced from experimental data
for the specific rotatory power. Homogeneous plane waves
propagating in this material have the form of circularly polar-
ized waves of either handedness with wave numbers qL �
qc∕�1 − qcβc� and qR � qc∕�1� qcβc�, for left- and right-circu-
lar polarization (LCP and RCP, respectively), where
qc � ω ���������ϵcμc

p
∕c. We note that βc � c∕ωp corresponds to a spe-

cific rotatory power of the order of ∼102 degrees per sample
thickness equal to one wavelength, at optical frequencies,
which is much larger than that of naturally occurring optically
active materials (a specific rotatory power as large as 7.2°∕μm
has been reported for poly-L-lactic acid in the visible range
[20]). However, properly designed chiral metamaterials can
exhibit a huge optical activity, which exceeds by several or-
ders of magnitude that of naturally occurring optically active
materials [11–13]. It is also worth noting that, assuming a con-
stant value for βc, the strength of chirality that can be quanti-
fied by the dimensionless parameter qcβc vanishes in the static
limit and increases linearly with frequency. Such an increase,
and even stronger than linear, is encountered in optically ac-
tive materials [21].

The core-shell particle under consideration is illuminated
by a plane EM wave. The electric field associated with a
time-harmonic, monochromatic EM wave, of angular fre-
quency ω, has the form E�r; t� � Re�E�r� exp�−iωt��. In a
homogeneous and isotropic medium, such as the metallic
shell and the host, E�r� can be expanded, in general, into reg-
ular and irregular vector spherical waves of electric and mag-
netic type [22,23]. In the chiral core, since the wavefield must
be finite at the origin, E�r� is expanded only into regular LCP
and RCP vector spherical waves.

In the shell region, the expansion coefficients of the irregu-
lar vector spherical waves are related linearly with those of
the regular vector spherical waves through the scattering ma-
trix T that describes the chiral spherical core, embedded in
the shell medium that extends (one assumes) to infinity
[24]. We denote the matrix elements of T in the spherical-wave
basis by TPlm;P0l0m0 , where P stands for the polarization mode,
electric (E) or magnetic (H), and l;m are the usual angular
momentum indices. Because of the spherical symmetry of
the scatterer, T is diagonal in l and independent of m; how-
ever, it is not diagonal in P in the given representation, which
reflects the mixing of the E and H modes because of chirality.
Therefore TPlm;P0 l0m0 � TPP0 ;lδll0δmm0 , with TPP0 ;l given by [4,25]

TEE;l �
UL;lCR;l � UR;lCL;l

UL;lVR;l � UR;lVL;l
; (4)

THH;l �
VL;lDR;l � VR;lDL;l

UL;lVR;l � UR;lVL;l
; (5)

TEH;l � i
UL;lDR;l − UR;lDL;l

UL;lVR;l � UR;lVL;l
� −THE;l; �6�

where

UL�R�;l �
�����������ϵcμm
ϵmμc

r
h�l �qmS�

1
z
∂�zjl�z��

∂z

����
z�qL�R�S

− jl�qL�R�S�
1
z
∂�zh�l �z��

∂z

����
z�qmS

; (7)

VL�R�;l � h�l �qmS�
1
z
∂�zjl�z��

∂z

����
z�qL�R�S

−

�����������ϵcμm
ϵmμc

r
jl�qL�R�S�

1
z
∂�zh�l �z��

∂z

����
z�qmS

; (8)

CL�R�;l �
�����������ϵcμm
ϵmμc

r
jl�qL�R�S�

1
z
∂�zjl�z��

∂z

����
z�qmS

− jl�qmS�
1
z
∂�zjl�z��

∂z

����
z�qL�R�S

; (9)

DL�R�;l � jl�qL�R�S�
1
z
∂�zjl�z��

∂z

����
z�qmS

−

�����������ϵcμm
ϵmμc

r
jl�qmS�

1
z
∂�zjl�z��

∂z

����
z�qL�R�S

: (10)

In the above equations, qm � ω ������������ϵmμm
p

∕c, and jl and h�l are
spherical Bessel and Hankel functions, respectively.

Similarly, the expansion coefficients of the regular vector
spherical waves in the shell can be linearly expressed in terms
of their counterparts in the host region through appropriate
expansion coefficients CPP0 ;l, P, P0 � E, H. After some
straightforward algebra, the boundary conditions of continu-
ity of the tangential components of the EM field at the inner
and outer surfaces of the shell lead to two 4 × 4 linear systems,
for each value of l � 1; 2; :::::. The solution of these systems
gives both CPP0 ;l and T tot

PP0 ;l, the latter being the elements of
the T matrix of the composite core-shell particle that relate
the expansion coefficients of the scattered field (irregular vec-
tor spherical waves) with those of the incident field (regular
vector spherical waves). The linear systems can be cast in the
form

0
BB@
d11 d12 d13 0
d21 d22 0 d24
d31 d32 0 d34
d41 d42 d43 0

1
CCA
0
BB@
CHH;l CHE;l

CEH;l CEE;l

T tot
HH;l T tot

HE;l

T tot
EH;l T tot

EE;l

1
CCA�

0
BB@
a1 0
0 −a2
0 a1
a2 0

1
CCA; (11)

where d11 � jl�qmS� � THH;lh
�
l �qmS�, d12 � THE;lh

�
l �qmS�,

d13 � −h�l �qS�, d21 � iTEH;l�h�l �qmS�∕�qmS� � h�0
l �qmS��,

d22 � ifjl�qmS�∕�qmS� � j0l�qmS� � TEE;l�h�l �qmS�∕�qmS��
h�0
l �qmS��g, d24 � −i�h�l �qS�∕�qS� � h�0

l �qS��, d31 ���������������������
ϵmμ∕ϵμm

p
TEH;lh

�
l �qmS�, d32 �

��������������������
ϵmμ∕ϵμm

p
�TEE;lh

�
l �qmS��

jl�qmS��, d34 � −h�l �qS�, d41 � −ifjl�qmS�∕�qmS��
j0l�qmS� � THH;l�h�l �qmS�∕�qmS� � h�0

l �qmS��g, d42 �
−iTHE;l�h�l �qmS�∕�qmS� � h�0

l �qmS��, d43 � i�h�l �qS�∕�qS��
h�0
l �qS��, and a1 � jl�qS�, a2 � −i�jl�qS�∕�qS� � j0l�qS��,

with q � ω∕c.
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The scattering cross section associated with the incident
plane-wave, normalized to the geometric cross section, can
be expressed in terms of the scattering T matrix of the com-
posite particle as follows [26]:

σsc �
2

�qS�2
X∞
l�1

�2l� 1��jTtot
EE;lj2 � jTtot

HH;lj2 � 2jTtot
EH;lj2�: (12)

Let us consider a core-shell sphere of radius S � 3.3c∕ωp

embedded in air. The shell, of inner radius Sc � 3c∕ωp and
thickness D � 0.3c∕ωp, is described by the Drude dielectric
function of Eq. (1) without dissipative losses (τ−1 � 0) and
μm � 1. The core is made of a chiral material with
βc � 1.5c∕ωp, ϵc � 2, and μc � 1. The chiral core of the com-
posite particle supports resonant modes of the EM field at
high frequencies where chirality becomes strong enough
[4]. On the other hand, the metallic shell supports particle
plasmon modes, where the EM field is localized mostly at
the outer surface of the shell, and cavity plasmon modes,
where the EM field is localized mostly at the inner surface
of the shell. Both modes are of electric 2l-pole type and have
been analyzed in detail elsewhere [15–17]. Plasmons of the
outer and inner surfaces of the shell interact with each other
and give rise to coupled modes, one below the lower (particle-
like) and one above the higher (cavity-like) modes, which can
be easily tuned by properly adjusting the thickness of the shell
[15–17]. In the scattering cross section displayed in Fig. 1, the
resonant modes of the chiral core and the particle-like plas-
monic modes of the metallic shell are clearly visible. The cav-
ity-like plasmonic modes appear at higher frequencies
(>0.8ωp), and are not in the frequency region of interest. If
we set βc � 0, the chiral resonances disappear, thus allowing
us to distinguish and identify the origin of the various modes.
The fundamental dipole particle-like plasmon mode appears
at 0.18ωp, the quadrupole at 0.24ωp, the octapole at 0.28ωp,
etc. Correspondingly, the fundamental dipole resonant mode
of the chiral core appears at 0.31ωp and the quadrupole
at 0.34ωp.

3. PHOTONIC CRYSTALS OF METAL-
COATED CHIRAL SPHERES
A. Description of the Crystal and Method of Calculation
We shall investigate in detail a particular example of an fcc
crystal of the metal-coated chiral spheres considered in the

previous section, with lattice constant a � 10c∕ωp. We view
the crystal as a sequence of (001) crystallographic planes.
In each plane, the spheres are arranged on a square lattice,
of lattice constant a0 � a

���
2

p
∕2, while consecutive planes

are separated by a distance d � a∕2. Since the given crystal
lacks invariance under space inversion because of the chiral
material, the appropriate point symmetry group is O, which
consists of only proper rotations, and not Oh that would be
if the cores of the spheres were optically inactive [27].

We calculate the photonic eigenmodes and the optical re-
sponse of this crystal by the full electrodynamic layer-multi-
ple-scattering method [22,23], which is ideally suited for the
case under consideration. Besides the complex photonic band
structure of the infinite crystal, the method allows one to cal-
culate, also, the reflectance of the semi-infinite crystal as well
as the reflectance and transmittance of a finite slab of the crys-
tal, at any angle of incidence and, in this respect, it can de-
scribe an actual transmission experiment. Another
advantage of the method is that it solves Maxwell equations
in frequency domain and, therefore, it can treat dispersive ma-
terials, such as chiral substances and metals, and include dis-
sipative losses in a straightforward manner. The properties of
the individual scatterers enter only through the corresponding
T matrix. At a first step, in-plane multiple scattering is eval-
uated in the spherical-wave basis using proper propagator
functions. Subsequently, interlayer scattering is calculated
in a plane-wave basis through appropriate transmission and
reflection matrices, by including all propagating and evanes-
cent components of the wave field necessary to obtain con-
vergence. Therefore, interaction between the scatterers is
fully taken into account. Explicit expressions for the propaga-
tor functions and the transmission and reflection matrices can
be found elsewhere [22,23]. The scattering S matrix of a multi-
layer slab, which transforms the incident into the outgoing
wave field, is obtained by combining the transmission and re-
flection matrices of the component layers. The ratio of the
transmitted or reflected energy flux to the energy flux asso-
ciated with the incident wave defines the transmittance or re-
flectance of the slab, respectively. On the other hand, for a
three-dimensional crystal consisting of an infinite periodic se-
quence of layers, stacked along the z direction, applying Bloch
theorem for the wave field in the region between two conse-
cutive unit slabs leads to an eigenvalue equation, which gives
the z component of the Bloch wave vector, kz, for the given
angular frequency ω and in-plane-wave vector component re-
duced within the surface Brillouin zone, k‖, which are con-
served quantities in the scattering process. The eigenvalues
kz�ω; k‖�, looked upon as functions of real ω, define, for each
k‖, lines in the complex kz plane. Taken together, they con-
stitute the complex band structure of the infinite crystal asso-
ciated with the given crystallographic plane. A line of given k∥
may be real (in the sense that kz is real) over certain frequency
regions, and be complex (in the sense that kz is complex) forω
outside these regions. It turns out that, for given k‖ and ω, out
of the eigenvalues kz�ω; k‖�, none or, at best, a few are real
and the corresponding eigenvectors represent propagating
modes of the EM field in the given infinite crystal. The remain-
ing eigenvalues kz�ω;k‖� are complex, and the corresponding
eigenvectors represent evanescent waves. These have an am-
plitude that increases exponentially in the positive or negative
z direction and, unlike the propagating waves, do not exist as

Fig. 1. The scattering cross section of a spherical particle consisting
of a chiral core (βc � 1.5c∕ωp, ϵc � 2, μc � 1) of radius Sc � 3c∕ωp,
coated by a metallic shell, of thickness D � 0.3c∕ωp, described by the
Drude dielectric function without dissipative losses and μm � 1. The
particle is embedded in air. Solid and dotted lines denote particle-like
plasmon and chiral resonances, respectively.
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physical entities in the infinite crystal. However, they are an
essential part of the physical solutions of the EM field in a slab
of finite thickness. A region of frequency where propagating
waves do not exist, for given k‖, constitutes a frequency gap of
the EM field for the given k‖. If over a frequency region no
propagating wave exists whatever the value of k‖, then this
region constitutes an absolute frequency gap. In order to en-
sure adequate convergence in our calculations for the struc-
ture under consideration, it is sufficient to truncate the
spherical-wave expansions at lmax � 5 and take into account
37 two-dimensional reciprocal lattice vectors in the relevant
plane-wave expansions [22,23].

B. Photonic Band Structure and Light Transmission
In Fig. 2, we display the calculated photonic band structure of
the given crystal along its [001] direction. The bands along this
direction can be classified according to the irreducible repre-
sentations (A, B, E1, E2) of the C4 group, which is a subgroup
of O [27]. All these bands are nondegenerate, since the irre-
ducible representations of C4 are one dimensional. The E1

and E2 bands have the symmetry of LCP and RCP propagating
waves, respectively, and thus can be excited by a wave of the
appropriate polarization, incident normally on the (001) sur-
face of the crystal. The A and B bands cannot be excited by an
externally incident wave because they do not have the proper
symmetry. In a finite (001) slab of the crystal, these bands cor-
respond to bound states of the EM field that decrease expo-
nentially outside the slab on either side of it.

The eigenmodes at the center of the Brillouin zone,
k � �0; 0; 0�, have the symmetry of the full O point group,
while at the boundaries of the Brillouin zone, k �
�0; 0;�π∕d�, they have the symmetry of the D4 point group,
which is also a subgroup of O. Group theory dictates that
the optically active LCP and RCP bands along the [001] direc-
tion, of E1 and E2 symmetry, respectively, converge to doubly
degenerate modes at the corresponding boundaries of the
Brillouin zone and to threefold degenerate modes at the cen-
ter of the Brillouin zone [4]. We note that polarization decom-
position and existence of optically inactive bands apply only
along high-symmetry directions, such as [001] or [111]. Along
an arbitrary direction, all bands belong to the identity repre-
sentation of the trivial group and thus can be excited by an
appropriately incident wave of any polarization.

In Fig. 2, at low frequencies (below ω∕ωp ≈ 0.17), we iden-
tify two nondegenerate extended bands of LCP and RCP

modes, of E1 and E2 symmetry, respectively, as expected
for propagation in a homogeneous effective chiral medium,
in the reduced-zone representation because of structure per-
iodicity. In the frequency region about ω ≈ 0.2ωp, the photonic
band structure is characterized by the presence of three ad-
ditional narrow bands, one of E1, one of E2, and one of A sym-
metry, which originate from the dipole particle-like plasmon
modes of the individual metal-coated chiral spheres, weakly
interacting between them. The E1 and E2 narrow bands inter-
act with the extended effective-medium bands of the same
symmetry to produce the band diagram shown in Fig. 2. It
can be seen that anticrossing interactions lead to strong band
bending and negative-slope dispersion inside the Brillouin
zone, along with a frequency gap extending from 0.179ωp

to 0.211ωp in the given direction.
As mentioned above, along an arbitrary direction of the

Brillouin zone, all bands belong to the identity representation
of the trivial group and thus can be excited by an appropri-
ately incident wave of any polarization. Moreover, in this case,
anticrossing interaction between bands always takes place
and removes degeneracies to a major or minor degree depend-
ing on the shape of the modes involved. In Fig. 3, we display
the photonic band structure of the given crystal, along an ar-
bitrary direction that corresponds to k‖ � �0.15; 0�2π∕a0. In
this case, the bands cannot be classified as of purely LCP
or RCP character, but there is a different degree of LCP
and RCP admixture that varies along a specific band as shown
in Fig. 3. Characterizing the band eigenmodes in this way is
consistent with corresponding transmission spectra of finite
slab of the given crystal, for k‖ � �0.15; 0�2π∕a0. Modes with
a certain predominant circular-polarization character and po-
sitive (negative) group velocity couple predominantly to a
plane EM wave with the same polarization, incident along
the positive (negative) z direction on a (001) slab of the crys-
tal. As shown in Fig. 4, over the frequency range of a polar-
ization gap, only incident waves of opposite handedness
are allowed to pass through. In the inset of Fig. 4, we depict
the variation of the transmittance of a slab consisting of silver-
coated chiral spheres, versus the angle of incidence, θ, for
RCP incident light at a specific frequency where a correspond-
ing gap opens up off the normal direction. It can be seen that
for θ ≥ 15°, the RCP component of an incident light beam is
filtered out.

C. Isofrequency Contours and Negative Refraction
We now investigate the possibility of negative refraction in the
crystal under consideration, by examining the direction of the
relevant group velocities obtained from the exact form of the
calculated isofrequency surfaces. As can be seen in Fig. 2,
chirality splits the LCP and RCP components of the degener-
ate transverse modes and in doing so creates a short range of
frequencies just below the intersection point of the bands at
the center of the Brillouin zone, about 0.21ωp, where the
group velocity has the opposite sign to the phase velocity
(kz∂ω∕∂kz < 0) for a specific polarization, which is the signa-
ture of negative refraction. This mechanism for chiral negative
refraction has also been demonstrated by others [9,14] and is a
general one. Only the ingredients of a resonant system produ-
cing a band gap and chirality are needed. It is worth noting
that the characteristic dimensions in the structure under
study, i.e., particle size and interparticle distance, are 4–5

Fig. 2. (Color online) The photonic band structure of an fcc crystal,
with lattice constant a � 10c∕ωp, of chiral spheres (βc � 1.5c∕ωp,
ϵc � 2, μc � 1) of radius Sc � 3c∕ωp, coated with a metallic shell,
of thickness D � 0.3c∕ωp, described by the Drude dielectric function
without dissipative losses and μm � 1, along the [001] direction.
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times smaller than the wavelength (λ ∼ 30c∕ωp). Figure 5 dis-
plays isofrequency contours, ω�k� � const:, in the kx − kz
plane (ky � 0), in the frequency region of interest, which
are appropriate for the description of the refractive properties
of the crystal when the plane of incidence is the x–z plane.
This corresponds to incidence on the x–y and on the y–z crys-
tallographic surfaces, with ky � 0.

If a plane EM wave of angular frequency ω impinges on the
x − y surface of the crystal with q∥ � k∥ � �kx; 0�, the wave-
vector component parallel to the surface, kx, is conserved and
thus the points of the corresponding isofrequency curves with
the same specific value of their kx coordinate provide all pos-
sible wavevectors for the transmitted waves. The actual trans-
mitted waves are determined from the proper direction of the
corresponding group velocity, v � ∇kω�k�, which must be
pointing inside the crystal because of causality. For example,
if the crystal occupies the z > 0 half-space, vz must be posi-
tive. A careful inspection of Fig. 6 reveals that, for light of an-
gular frequency ω � 0.214ωp incident from air, we can have
kxvx < 0, i.e., negative refraction. More specifically, we obtain
a single negatively refracted beam for 0.04 < kxa0∕π < 0.11,
which corresponds to angles of incidence ranging from ∼5°

to ∼13°. Choosing a particular value of kxa0∕π � 0.05, the
kx-conservation line crosses the relevant isofrequency con-
tour of the crystal at two points, P and P0. The Bloch wave
defined at point P0 is backward propagating with respect to
the interface and thus it is not a physically acceptable trans-
mitted wave. Therefore, we obtain a single negatively re-
fracted beam from point P, as shown in Fig. 6. For smaller
angles of incidence, the kx-conservation line also crosses
the second branches of the isofrequency contour in the crystal
(at larger values of kz), and we may also have additional po-
sitively and negatively refracted beams. For larger angles of
incidence, also positively and negatively refracted beams
are simultaneously exited.

If we consider incidence on the y–z surface of the crystal
with q‖ � k‖ � �0; kz�, the conserved wavevector component
parallel to the surface is kz, and then we can also have
kzvz < 0, i.e., negative refraction, as shown in Fig. 7 for light
of angular frequency ω � 0.214ωp incident from air. In this
case, we obtain a single negatively refracted beam for
0.037 < kzd∕π < 0.086, which corresponds to a very short
range of angles of incidence from ∼3° to ∼7°. Choosing
kzd∕π � 0.05, the kz-conservation line crosses the relevant
isofrequency contour of the crystal at two points, P and P0.
The Bloch wave defined at point P0 is backward propagating

Fig. 3. (Color online) The photonic band structure of the crystal un-
der consideration for k∥ � �0.15; 0�2π∕a0. An enlarged view of the dis-
persion diagram in regions A, B, C is shown in the margin.

Fig. 4. (Color online) The photonic band structure of Fig. 3 for po-
sitive values of kz (left-hand diagram) and the corresponding transmis-
sion spectra of a (001) slab of the crystal, four layers thick, for LCP
(red line) and RCP (blue line) incident light (middle diagram). The
right-hand diagram displays the corresponding transmission spectra
if the metallic shell is described by the experimental dielectric func-
tion of bulk silver [28], which includes dissipative losses. The variation
of the transmittance of this slab versus the angle of incidence, θ, for
RCP incident light of frequency ℏω � 1.8 eV is shown in the inset.

Fig. 5. (Color online) Isofrequency contours in the kx–kz plane
(ky � 0) for the crystal under consideration. The shaded rectangle
shows the projection of the Brillouin zone on this plane.

Fig. 6. (Color online) Isofrequency-contour analysis of the refraction
of light of angular frequency ω � 0.214ωp incident from air on the x–y
surface of the crystal under study with ky � 0. The wavevectors and
group velocities of the incident (i), reflected (r), and transmitted (t)
waves are indicated by long and short arrows, respectively. An en-
larged view of the transmitted wavevector and group velocity is dis-
played in the margin. The dotted horizontal line in the top diagrams is
the kx-conservation line. Negative refraction in real space is shown in
the bottom diagram.
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with respect to the interface and thus it is not a physically ac-
ceptable transmitted wave. Therefore, we obtain a single ne-
gatively refracted beam from point P, as shown in Fig. 7. It is
worth noting that, at smaller angles of incidence, the kz-con-
servation line also crosses the second branches of the specific
isofrequency contour in the crystal (at larger values of kx) and
a positively refracted beam is also excited. For larger angles of
incidence, we always have regular refraction.

In view of the restricted range of angles of incidence for
which a single negatively refracted beam is obtained, it should
be stressed that negative refraction cannot be simply deduced
from the existence of a band with negative slope and assign-
ment of a scalar refractive index that refers to a specific mode
and a particular direction of propagation. A direct demonstra-
tion that takes into account the full photonic band structure
based, e.g., on the exact form of the isofrequency surfaces, is
necessary.

4. CONCLUSIONS
In summary, we reported a thorough theoretical study of the
optical properties of an fcc photonic crystal of metal-coated
chiral spheres, by means of rigorous, full electrodynamic cal-
culations using the layer-multiple-scattering method. We ana-
lyzed photonic band diagrams, in conjunction with relevant
polarization-resolved transmission spectra for normal inci-
dence or incidence at an angle on a given surface of the crys-
tal, in the light of group theory. We explained the nature of the
different eigenmodes of the EM field and revealed the exis-
tence of partial directional gaps, which can be easily tuned
by a proper choice of the geometric parameters of the me-
tal-coated chiral spheres and allow for polarization-selective
transmission within a narrow range of angles of incidence. Fi-
nally, we investigated the possibility of negative refraction in
the frequency region of a band with negative slope along the
[001] direction. By carefully analyzing the corresponding iso-

frequency surfaces, we found that negative refraction takes
place only for a short range of angles of incidence.
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