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It is shown that a planar defect in the stacking sequence of an all-dielectric photonic crystal of garnet spheres
strongly supports localized optical guided modes, which originate fromMie resonances of the individual spheres.
If the defect breaks space-inversion symmetry and the garnet particles are magnetized inplane, nonreciprocal and
lossless transport of light on the defect plane, expected on the basis of group theory in the Voigt–Cotto–Mouton
configuration, is demonstrated in ultrathin films of the defect crystal by means of full electrodynamic calculations
using the layer-multiple-scattering method properly extended to photonic crystals of gyrotropic spheres. © 2014
Optical Society of America

OCIS codes: (160.3820) Magneto-optical materials; (290.4210) Multiple scattering; (310.2790) Guided
waves; (160.5293) Photonic bandgap materials.
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1. INTRODUCTION
Nonreciprocal photonic structures that lack both space-
inversion and time-reversal symmetries [1] have attracted con-
siderable interest in recent years for a variety of reasons.
These structures include new physics such as the emergence
of topologically protected one-way photonic edge modes [2–5]
as well as technologically important devices such as circula-
tors and isolators, all of which are described by a nonsymmet-
ric scattering matrix [6]. Among the different architectures,
layered composites provide a versatile platform for realizing
asymmetric heterostructures, while breaking of time-reversal
symmetry can be accomplished with magneto-optical effects
driven by external or internal magnetic fields. Along this line,
it has been shown that a planar waveguide formed at a metal/
photonic crystal interface supports one-way electromagnetic
(EM) modes under the action of a static uniform magnetic
field [7], which, however, must be prohibitively strong, of
the order of 103–104 T. In an alternative design with the pho-
tonic crystal made from a transparent dielectric material that
exhibits strong magneto-optical activity such as bismuth iron
garnet, nonreciprocity was found at relatively weak magnetic
fields [8]. Moreover, the occurrence of nonreciprocal guided
modes has been demonstrated in a periodic monolayer of
magnetized plasma particles supported by a dielectric sub-
strate [9] and of magnetic garnet particles on a plasma surface
[10]. On the other hand, tunable one-way terahertz plasmonic
waveguides based on nonreciprocal magnetoplasmons in
metal/dielectric/semiconductor slabs under an external mag-
netic field have also been proposed [11,12]. It is worth-noting
that in all of these layered structures symmetry dictates that
nonreciprocal light transport occurs in the transversal Voigt–
Cotton–Mouton configuration in which the applied magnetic
field is parallel to the interfaces and perpendicular to the wave
propagation direction [13].

In the present paper we report a detailed theoretical study
of an all-dielectric photonic crystal made of magnetic garnet
spheres with a single planar defect, which supports nonrecip-
rocal guided modes. The proposed structure does not suffer
from dissipative losses as is the case in magnetoplasmonic
architectures due to the strong localization of the wave field
at the defect plane/Even a thin film of the crystal consisting of
a few layers with the defect operates as an efficient waveguide
allowing for the design of ultracompact nonreciprocal
devices.

2. METHOD OF CALCULATION
At visible and infrared frequencies, the gyrotropic response of
magnetic materials is rather weak and can be described by a
relative magnetic permeability μg � 1 and a relative electric
permittivity tensor of the form

ϵg
 ! � ϵ

 1 −ig 0
ig 1 0
0 0 1

!
; (1)

if the magnetization points in the z direction. In the present
work we assume ϵ � 6.25 and g � 0.01, which are achievable
with magnetic garnets [14–16].

Our calculations are based on the full-electrodynamic layer-
multiple-scattering method that we recently extended to pho-
tonic structures of gyrotropic spheres. A detailed description
of the method can be found elsewhere [17–19]. Here we
restrict ourselves in noting that we evaluate the scattering
T matrix of the single gyrotropic sphere in a spherical-wave
basis from a set of coupled linear equations that relate the
expansion coefficients of the scattered to those of the incident
field [19–23]. If the gyration vector is oriented along the
z direction, the T matrix has a block diagonal form:
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TPlm;P0 l0m0 � T
�m�
Pl;P0l0δmm0 ;

where P stands for the polarization mode, magnetic �H� or
electric �E�, and l;m are the usual angular momentum indices.
Moreover, T �m�

Pl;P0 l0 vanishes identically if the magnetic/electric
multipoles corresponding to Pl and P0l0 do not have the same
parity, even or odd, which means that the T matrix in a given
m subspace is further reduced into two submatrices. The
above symmetry properties, however, do not hold in any
coordinate system. In general, if α; β; γ are the Euler angles
transforming an arbitrarily chosen coordinate system into
the given coordinate system in which the gyration vector is
oriented along the z axis, the T matrix is given by [24]

TPlm;P0 l0m0 �
X
m00

D
�l�
mm00 �α; β; γ�T �m

00�
Pl;P0 l0D

�l0�
m00m0 �−γ;−β;−α�; (2)

where D�l� are the appropriate transformation matrices asso-
ciated with the l irreducible representation of the O�3�
group [25].

3. RESULTS AND DISCUSSION
The optical response of a single unmagnetized garnet sphere
[g � 0 in Eq. (1)] of radius S is characterized by strong and
spectrally separated magnetic �H� and electric �E� multipole
(2l-pole, l � 1; 2; 3;…) Mie resonances with increased field
intensity in the region of the sphere [26]. If such spheres
are assembled into a sparse periodic structure, narrow
photonic bands of collective Bloch states are formed from
the resonant modes of the individual particles, weakly inter-
acting between them. The wavefield associated with these
states maintains a strongly localized character in the region
of the spheres. In addition to the above narrow bands, there
are of course extended bands of propagating modes in the
homogeneous host medium, which are folded within the first
Brillouin zone because of the periodic structure, while Bragg
gaps open up at the Brillouin zone boundaries. Anticrossing
interaction between narrow and extended bands of the same
symmetry gives rise to the formation of additional frequency
gaps and hybridized bands that have strong admixture of the
localized modes in their flat parts, near the boundaries and the
center of the first Brillouin zone.

Such a photonic band diagram, along the [001] direction of
a simple cubic crystal of unmagnetized garnet spheres with
radius to lattice constant ratio S∕a � 0.3 in air, is shown in
Fig. 1(a). Along the given crystallographic direction, the bands
have the symmetry of the irreducible representations of the
C4v point group [25], and thus they are either nondegenerate
or doubly degenerate. It is worth noting that only the doubly
degenerate bands can be excited by light incident normally on
a finite (001) slab of the crystal. The nondegenerate bands are
optically inactive because they do not have the proper sym-
metry in a finite (001) slab of the crystal corresponding to
bound states of the EM field that decrease exponentially out-
side the slab on either side of it. Apart from the ordinary
frequency bands, which correspond to real values of the z

component of the wave vector kz, in Fig. 1(a) we show the
gap regions with dotted lines, the optically active doubly de-
generate real-frequency lines with the smallest in magnitude
imaginary part of kz, which determine the attenuation of
the wave field over these regions. The extinction of light

propagating through the crystal, if its angular frequency ω lies
within a band gap, is 2d Im�kz�ω�� � const., where d is the
propagation distance for a given value of the x–y component
of the wave vector [see Fig. 1(b)].

It can be seen from Fig. 1 that there are two gaps in the
frequency region under consideration. The lowest frequency
gap is a Bragg gap, while the second gap is a hybridization-
induced gap, which arises from anticrossing interaction be-
tween the extended effective-medium band and a narrow
band that originates from the fundamental magnetic dipole
resonant modes of the individual spheres [26]. A more detailed
analysis of the formation of this hybridization gap can be
found elsewhere [27]. The attenuation within the first (Bragg)
gap is relatively small, but within the second (hybridization)
gap it is very strong, which is the case for other directions in
reciprocal space as well. A big advantage of using this hybridi-
zation gap instead of a structural Bragg gap in unidirectional
configurations in order to suppress radiative modes [7] is pre-
cisely the very strong attenuation that can be achieved even
with a thin film of the crystal consisting of a few layers of
spheres. There is also an interesting observation to be made
about the section of the real-frequency line over the hybridi-
zation gap with kz complex and 0 ≤ Re�kz� ≤ π∕a. The band
structure of Fig. 1(a) applies to the infinite crystal, and the
corresponding extinction spectrum in Fig. 1(b) reflects the
properties of a slab of 16 planes of spheres. The resonances
in the extinction of the slab, which is defined as minus the
natural logarithm of the transmittance, suggest that at the cor-
responding frequencies there exist resonances of some kind in
the slab, and we observe that these resonances appear within
the frequency gap of the infinite crystal. These resonances
(of the slab) are clearly due to resonances of the wave field
localized on the individual spheres interacting very weakly
between them. Of course, there cannot be states of the EM
field in the infinite crystal within the gap, i.e., with complex
kz. But in a slab of finite thickness, such evanescent waves

Fig. 1. (a) Photonic band structure of a simple cubic crystal of
unmagnetized garnet spheres, with radius to lattice constant ratio
S∕a � 0.3, in air, (see inset) along its [001] direction. Thick and thin
lines denote doubly degenerate and nondegenerate bands, respec-
tively. Over the frequency gaps with dotted lines we display the doubly
degenerate real frequency lines with the smallest in magnitude imagi-
nary part, which is depicted in the shaded region. (b) Corresponding
extinction spectrum for light incident normally on a slab consisting of
16 (001) planes of spheres of the given crystal. In the upper part of the
figure we show an enlarged view of the diagrams in the frequency
region about the second band gap.
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may exist and may lead to resonances of the EM field with a
high amplitude at the surface of the slab (within the spheres of
the surface planes) and a much smaller amplitude in the
middle of the slab (within the spheres of the middle planes).
It is worth noting that the resonances of the slab appear at the
frequencies along the real-frequency line corresponding to
Re�kz�a∕π � κ∕�NL � 1�, κ � 1; 2;…; NL, where NL � 16 is
the number of planes in the given slab as shown by the open
circles in the enlarged view of Fig. 1(a). This implies that the
number of resonance peaks over the gap region increases with
the thickness NL of the slab.

Within the layer-multiple-scattering formalism, it is straight-
forward to introduce into the structure a planar defect with
the same two-dimensional periodicity by, e.g., replacing the
spheres of one particular plane with spheres of different types
and/or size, shifting the plane, etc. Here we choose to create a
planar defect in the given crystal by shifting a particular (001)
lattice plane along the [001] direction so as to break space-
inversion symmetry, while time-reversal symmetry is removed
by magnetizing the garnet spheres. It has been shown that a
planar defect in a photonic crystal gives rise to bands of inter-
face states of the EM field corresponding to frequencies
within the frequency gaps of the crystal, which manifest them-
selves as resonance structures in the transmission spectrum
of light incident at a given angle on a finite slab of the material
[28]. We consider a slab consisting of just five (001) layers of
spheres of the crystal under study, with the middle layer being
shifted by 25% along the [001] direction, as shown in Fig. 2(a),
and focus on the hybridization gap where the attenuation is
very strong, and thus we obtain well localized interface modes
that correspond to sharp resonances. If the garnet spheres are
magnetized normal to the defect plane, the structure remains
invariant under the operations of the C4 point-symmetry
group and spectral reciprocity of the interface modes
ω�−kx;−ky� � ω�kx; ky� is always ensured by a rotation
through an angle π about the z axis, which is a symmetry
operation of C4 [25]. However, if the garnet spheres are mag-
netized parallel to the defect plane, say along the y direction,
the relevant point symmetry group C1h consists of two
operations: identity and reflection with respect to the x–z
plane [25]. Therefore, in this case, while reciprocity of the
interface modes guided along the magnetization direction,
ω�0;−ky� � ω�0; ky�, is ensured by mirror symmetry with re-
spect to the x–z plane, ω�−kx; 0� ≠ ω�kx; 0� because there is no
group symmetry operation that transforms �kx; 0; 0� into
�−kx; 0; 0�, given also the lack of time-reversal symmetry. Con-
sequently, since nonreciprocity of interface guided modes is
anticipated in the Voigt–Cotton–Mouton geometry with the
garnet spheres magnetized inplane, we study this configura-
tion through detailed transmission calculations by systemati-
cally varying the angle of incidence in the x–z plane from −π∕2
to π∕2 or, equivalently, by varying kx and keeping ky � 0.
Because of the C1h symmetry of this configuration, the inter-
face modes are either even or odd upon reflection with re-
spect to the x–z plane and can be excited by appropriately
incident light polarized in the plane of incidence (p polariza-
tion) or normal to the plane of incidence (s polarization),
respectively. In this case it is worth noting that since the mag-
netization is not oriented along the z direction, which is by
definition the direction of growth of the crystal in the
layer-multiple-scattering method, but along the y direction,

we need to transform the T matrix of the single magnetic
garnet sphere according to Eq. (2) using the appropriate Euler
angles: α � 90°, β � 90°, and γ � 0°.

Figure 2 displays the transmission spectra of the slab with
the planar defect under consideration within the hybridization
gap of the crystal, for s- and p- polarized light incident in the
x–z plane, versus the x-component of the wave vector kx,
which defines the angle of incidence θ � arcsin�ckx∕ω�. For
both polarizations the strongly localized defect guided modes
are manifested as sharp transmission peaks for relatively
small angles of incidence. As the angle of incidence gets larger
the associated frequency gap shrinks and the transmission
peaks become broader due to the increasing leakage of the

Fig. 2. (a) Five-layers-thick (001) slab of a simple cubic crystal of
garnet spheres, in air, with the middle plane displaced by 25% along
the [001] direction. The spheres are magnetized along the y direction
and their radius is 30% of the lattice constant. Transmittance of the
above slab within the hybridization gap of the crystal (see Fig. 1),
for s- and p- polarized light [(b) and (c), respectively] incident in
the x–z plane at an angle θ corresponding to kx � �ω∕c� sin θ. The
inset displays an enlarged view (b) in the region indicated by the
dashed rectangle, with the (+) and (−) signs denoting positive and
negative values of kx, respectively.
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corresponding modes, which finally merge into the continuum
of the photonic bands of the crystal. As can be seen from the
enlarged view of Fig. 2(b), there is a spectral splitting of the
dispersion curves associated with the forward and backward
propagating guided waves in the direction normal to the mag-
netic field, ω�−kx; 0� ≠ ω�kx; 0�, which is a clear signature of
nonreciprocity. This can be clearly observed in Fig. 3, where
extinction spectra for selected values of jkxja∕2π � 0.20, 0.27,
and 0.40 corresponding to angles of incidence θ � 17°, 23°,
and 30°, respectively, of s-polarized light are displayed. The
extinction ratio between forward- and backward-propagation
waves reaches values as large as 30–40. However, by increas-
ing the angle of incidence, this ratio decreases because
of the broadening of the resonances and becomes vanishingly
small.

4. CONCLUSIONS
In summary, by means of rigorous full electrodynamic calcu-
lations using the layer multiple-scattering method, we studied
the optical response of a three-dimensional crystal of
magnetic garnet spheres with a planar defect in the stacking
sequence, which breaks space-inversion symmetry. We dem-
onstrated the occurrence of nonreciprocal guided modes,
strongly localized on the defect plane even in thin films of
the structure (a few layers thick), in the Voigt–Cotton–Mouton
configuration for inplane magnetization and provided a con-
sistent interpretation of the underlying physics.
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