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Nonreciprocal photonic surface states in periodic structures of magnetized plasma nanospheres
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We report on the occurrence and properties of photonic surface states in periodic structures of magnetized
plasma nanospheres by means of rigorous calculations using the full-electrodynamic layer-multiple-scattering
method, properly extended to treat gyrotropic spheres with arbitrarily oriented gyration vector. More specifically,
dispersion diagrams of Tamm states at the (001) surface of a semi-infinite fcc crystal of plasma nanospheres and
of guided modes of a square array of such spheres supported by a quartz substrate, without and under the action
of an in-plane static uniform magnetic field, are analyzed and nonreciprocal optical response, which emerges as
a result of the simultaneous lack of space-inversion and time-reversal symmetries, is demonstrated in the Voigt
geometry.
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Excitations at the surface of a plasmonic material (metal
or semiconductor), in the presence of a magnetic field, can
exhibit nonreciprocal behavior due to the simultaneous lack
of space-inversion and time-reversal symmetries.1,2 Such a
nonreciprocal behavior was for instance observed in the
reflection of light at the surface of an n-type InSb crystal
with respect to field and light-propagation reversal.3 More
recently, the existence of one-way electromagnetic (EM)
modes in a planar waveguide formed in the region between
a semi-infinite metal and a semi-infinite photonic crystal,
under a static uniform magnetic field, was also reported.4

In a versatile alternative design5 with a photonic crystal
made from a transparent dielectric material that exhibits a
strong magneto-optical activity, such as bismuth iron garnet,
nonreciprocity was found at relatively weak magnetic fields.

Plasmonic nanostructures can exhibit a substantial
magneto-optical activity due to the excitation of localized
surface plasmon resonance modes6 and discontinuous surfaces
consisting of plasma nanoparticles provide a more flexible
platform for tailoring plasmons by varying the shape and
geometrical arrangement of the particles as well as their
dielectric environment, compared to the corresponding homo-
geneous plasma surface.7–13 However, nonreciprocal effects
in the optical response of such discontinuous surfaces under
the action of an external magnetic field have not yet been
investigated in detail. In the present paper we report a
systematic theoretical study of spectral nonreciprocity of
surface guided modes localized at the (001) surface of a
semi-infinite fcc crystal of plasma nanospheres and at a single
(001) layer of this crystal deposited on a substrate.

Our calculations are based on the full-electrodynamic
layer-multiple-scattering method that we recently extended
to photonic structures of gyrotropic spheres.14 A detailed
description of the method can be found elsewhere.15,16 Here,
we restrict ourselves in saying that we evaluate the scattering
T matrix of a gyrotropic sphere in a spherical-wave basis from
a set of coupled linear equations that relate the expansion
coefficients of the scattered to those of the incident field.17–20

If the gyration vector is oriented along the z direction, the T

matrix has a block diagonal form: TP lm;P ′l′m′ = T
(m)
P l;P ′l′δmm′ ,

where P stands for the polarization mode, magnetic (H ) or
electric (E), and l,m are the usual angular momentum indices.

Moreover, T
(m)
P l;P ′l′ vanishes identically if the magnetic/electric

multipoles corresponding to P l and P ′l′ do not have the same
parity, even or odd, which means that the T matrix in a
given m subspace is further reduced into two submatrices.
The above symmetry properties, however, do not hold in
any coordinate system. In general, if α,β,γ are the Euler
angles transforming an arbitrarily chosen coordinate system
into the given coordinate system in which the gyration vector
is oriented along the z axis, the T matrix is given by

TP lm;P ′l′m′ =
∑
m

′′
D

(l)
mm

′′ (α,β,γ )T (m
′′

)
P l;P ′l′D

(l
′
)

m
′′
m

′ (−γ,−β,−α),

(1)

where D(l) are the appropriate transformation matrices associ-
ated with the l irreducible representation of the O(3) group.21

We assume that the plasma nanospheres of the structures
under consideration are characterized by a relative magnetic
permeability μp = 1 and by the simple yet effective Drude
relative electric permittivity22

εp = 1 − ω2
p

ω2[1 + i/(τω)]
, (2)

where τ is the relaxation time of the free carriers and ωp is the
bulk plasma frequency: ω2

p = ne2/(mε0), with n, − e, and
m the carrier density, charge, and mass, respectively, which
naturally introduces c/ωp as the length unit. We note that,
assuming h̄ωp � 10 eV, which is a typical value for metals,
c/ωp corresponds to about 20 nm. For semiconductors, on the
other hand, as their carrier densities can be easily varied within
a broad range of values, which are much lower than those in
metals, the plasma frequency is much smaller (typically at
mid- and far-infrared frequencies) and the length unit c/ωp

increases accordingly.
In the presence of a static uniform magnetic field B,

the response of a plasma to a time-harmonic EM wave
of angular frequency ω, with electric-field component E =
E0 exp(−iωt), is described by the equation of motion of
the electrons: mr̈ = −mτ−1ṙ − eE − eṙ × B. The resulting
polarization density, P = −ner, defines an electric displace-
ment vector D = ε0E + P and finally yields the relative electric
permittivity tensor ←→εg of the magnetized plasma through
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FIG. 1. (Color online) A semi-infinite fcc crystal of Drude
spheres (nearest neighbor distance: a0 = 2.2c/ωp; sphere radius:
S = c/ωp), grown along its [001] direction, with a surface state
(schematic representation) and the corresponding surface Brillouin
zone.

D = ε0
←→εg E. Defining the cyclotron resonance frequency,

ωc = eB/m, if B is oriented along the z direction, after some
straightforward algebra we find that ←→εg has the gyrotropic
form

←→εg =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − ω2
pξ

ω2ξ 2 − ω2
c

i
ωc

ω

ω2
p

ω2ξ 2 − ω2
c

0

−i
ωc

ω

ω2
p

ω2ξ 2 − ω2
c

1 − ω2
pξ

ω2ξ 2 − ω2
c

0

0 0 1 − ω2
p

ω2ξ 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(3)

with ξ = 1 + i/(τω). We note that, by setting ωc = 0, ←→εg

becomes a diagonal tensor with all of its diagonal elements
equal to εp given by Eq. (2), as expected. In our calculations
we shall neglect dissipative losses (τ−1 = 0) in order to ensure
an unambiguous interpretation of the photonic dispersion
diagrams.

We first consider a semi-infinite fcc crystal of plasma
spheres, grown along its [001] direction, as shown in Fig. 1.
The spheres have a radius S = c/ωp and the nearest neighbor
distance in the fcc lattice is a0 = 2.2c/ωp. It has been recently
shown that this crystal supports surface, so-called Tamm, states
at its (001) surface.23 The dispersion curve ω(k‖), where k‖
is the in-plane (x-y) wave vector component reduced within
the surface Brillouin zone of an optical Tamm state, lies
outside the light cone in the host medium and at the same
time within a frequency gap of the crystal. This ensures that
the associated EM field decreases exponentially on either side
of the surface. Moreover, the dispersion of a surface state
satisfies the reciprocity condition ω(−k‖) = ω(k‖). In Fig. 2
we display the projection of the photonic band structure of
the crystal of Fig. 1 on symmetry lines of its (001) surface
Brillouin zone. The shaded regions represent frequency bands,
i.e., at any frequency within a shaded region, for given k‖, there

FIG. 2. (Color online) Projection of the photonic band structure
of the crystal of Fig. 1 on symmetry lines of its (001) surface Brillouin
zone. Shaded and blank regions represent frequency bands and gaps,
respectively. With solid lines in gap regions we show the dispersion
curves of the surface modes. The dotted lines denote the light cone
in the host medium (air).

exists at least one propagating EM mode in the infinite crystal.
The blank regions represent frequency gaps for the given k‖.
With solid lines in the gap regions we show the dispersion of
surface states, while the dotted straight lines denote the light
cone in the air host. These modes lie indeed in gap regions
and outside the light cone, i.e., they are true surface states that
decay exponentially in the crystal as well as in the outer region.

The formation of frequency bands and gaps outside the
air light cone as well as of the Tamm states of Fig. 2 can
be understood by considering corresponding finite slabs with
progressively increasing thickness. In Fig. 3 we present the
dispersion diagrams of the eigenmodes of one-, two-, and four-
layers thick (001) slabs of the crystal of Fig. 1, along 
X. The
wave field associated with these eigenmodes is localized within
the given slab and decays exponentially in the outer region. It
can be seen from Fig. 3 that, as the number of layers increases,
the band regions of the infinite crystal outside the air light cone
are progressively filled with slab modes while the gap regions
remain empty. Moreover, for a multilayer slab, we obtain two

FIG. 3. (Color online) Formation of the band and gap regions
outside the light cone in the air host, as well as of the surface states,
of Fig. 2 from the slab modes of (a) one-, (b) two-, and (c) four-layers
thick (001) slabs of the crystal of Fig. 1, along 
X.
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FIG. 4. (Color online) Influence of a static uniform magnetic field
corresponding to ωc = 0.01ωp applied along the [110] direction of the
fcc crystal of Fig. 1, which is taken to be the y axis, on the dispersion
curves of the surface states of Fig. 2 in the kx direction. An enlarged
view of these dispersion curves is displayed in the right-hand panel,
with the (+) and (−) signs denoting positive and negative values of
kx , respectively.

additional dispersion curves, close to each other in frequency,
which correspond to modes localized at the two surfaces of the
slab, as shown in Figs. 3(b) and 3(c). As the number of layers in
the slab increases, interaction between these modes becomes
weaker and their dispersion curves converge to those of the cor-
responding Tamm states of the semi-infinite crystal of Fig. 3.

In Fig. 4 we display the dispersion diagram of the Tamm
states of Fig. 2 along 
X under the influence of an external
static uniform magnetic field, applied parallel to the surface,
along the y direction, corresponding to ωc = 0.01ωp. This
value of ωc, though it is by an order of magnitude smaller
than that considered by Yu et al.,4 for metals corresponds to
a prohibitively strong magnetic field, of the order of 103 T,
but for semiconductors the field becomes much weaker, of the
order of 1 T or less. Since in this case the static magnetic field is
not oriented along the z direction, which is by definition the di-
rection of growth of the crystal in the layer-multiple-scattering
method, the calculations involved require transforming the T

matrix according to Eq. (1) using the appropriate Euler angles:
α = 90◦, β = 90◦, γ = 0◦.24 As we can see from the enlarged
view of the dispersion curves, the propagation of the surface
states along the direction normal to the magnetic field changes
and becomes nonreciprocal: ω(−kx) �= ω(kx). Reversal of the
magnetic field direction has the same effect as reversal of the
propagation direction (kx → −kx) while, if the magnetic field
is perpendicular to the surface or parallel to the propagation
direction, nonreciprocity is not encountered. As a result of
the spectral splitting of the dispersion curves associated with
the forward and backward propagating waves, within a short
frequency range near their band edges, only modes propagating
in one direction exist, as shown in Fig. 4. The relative
spectral shift of the bands depends on the magnitude of the
external field, which allows for the design of tunable surface
states for one-way light transport. A similar nonreciprocal
behavior has been reported for surface modes at truncated
one-dimensional magnetophotonic crystals.25 It should be
noted that nonreciprocity also occurs in surface resonant states

z

y x
a0

B

FIG. 5. (Color online) Dispersion diagram in the kx direction of
the guided modes of a square array of Drude spheres (lattice constant:
a0 = 2.2c/ωp; sphere radius: S = c/ωp) on a quartz substrate, under
the action of a static uniform magnetic field corresponding to ωc =
0.01ωp applied in the y direction (see inset). The dotted lines denote
the light cones in air and quartz. An enlarged view of the dispersion
curves of these modes is displayed in the right-hand panel, with
the (+) and (−) signs denoting positive and negative values of kx ,
respectively.

that lie inside the light cone in the host medium and thus can
be excited by an incident EM wave. Excitation of such waves
was recently shown to lead to the phenomenon of one-way
extraordinary optical transmission through a perforated metal
film in a magneto-optical environment, at oblique incidence.26

Such leaky surface modes which, lying within a band gap,
would of course not be transmitted through the crystal, do not
appear in our case.

From Fig. 3(a) it is clear that even a single (001) layer of
the crystal of Fig. 1 supports guided modes of the EM field,
localized in the monolayer. However, in this case, application
of a static uniform magnetic field cannot render these modes
nonreciprocal because of the existence of space-inversion
symmetry. This symmetry can be broken if the layer is
deposited on a substrate. In Fig. 5, we display the dispersion
diagram along kx of the guided modes of this layer on a
supporting quartz substrate under the action of a static uniform
magnetic field, corresponding to ωc = 0.01ωp, applied along
the y direction (see inset to Fig. 5). Again, as can be seen from
an enlarged view of the dispersion curves, the propagation of
the guided modes along the direction normal to the magnetic
field becomes nonreciprocal: ω(−kx) �= ω(kx).

It is worth noting that the planar geometries studied in
the present work are invariant under the C4v point symmetry
group.21 If an external magnetic field is applied along the
z direction, i.e., perpendicular to the surface, the point
group is reduced to C4 since P←→εg P−1 = ←→εg only for those
operations P̂ of C4v that belong to C4, and spectral reciprocity
ω(−k‖) = ω(k‖) is always ensured by a rotation through an
angle π about the z axis, which is a symmetry operation
of C4. If now the magnetic field is in-plane, say along
the y direction, the relevant point symmetry group C1h

consists of the identity and reflection with respect to the
x-z plane operations.21 Therefore, while reciprocity along the
y direction, ω(−ky) = ω(ky), is ensured by mirror symmetry
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with respect to the x-z plane, ω(−kx) �= ω(kx) because there
is no group symmetry operation which transforms (kx,0,0)
into (−kx,0,0), given also the lack of time-reversal symmetry.
Therefore, in the structures under study, nonreciprocity occurs
in the Voigt (Cotton-Mouton) geometry, for an in-plane
external magnetic field.

In concluding this paper, it should be noted that magneto-
optic effects, being proportional to the magnitude of the
nondiagonal elements of ←→εg , are expected to increase (cu-
bically in the ωc 	 ω < ωp regime) with ωp/ω. Therefore,

stronger spectral nonreciprocity is anticipated in correspond-
ing structures of magnetized plasma nanoshells with optimized
geometric parameters23 or/and dielectric environment. It is
also worth noting that the effects discussed in this paper can
also occur in corresponding structures of magnetic garnet
spheres, which exhibit a quite strong gyrotropic response in
moderate magnetic fields.
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